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Abstract: 
Visual object tracking remains a fundamental yet challenging task in artificial intelligence and 

computer vision, with applications spanning intelligent video surveillance, drones, and robotics. 

Traditional tracking algorithms often struggle with complex real-world scenarios, including 

background interference, target deformations, and occlusions. While Siamese networks like SiamFC 

have shown promise, their reliance on shallow networks like AlexNet limits their ability to handle 

intricate tracking tasks. This study introduces the MDASiam algorithm, which enhances the 

SiamFC framework by integrating a deeper CIResNet-22 network and a meta-learning module. The 

deeper network architecture allows for more precise feature extraction, while the meta-learning 

module adaptively learns target feature scale parameters, creating an optimal feature representation 

space for tracking. Experimental results on the OTB dataset demonstrate that MDASiam 

significantly improves tracking accuracy and robustness in diverse and complex scenarios. However, 

the increased depth of the network requires substantial computational resources, which poses 

challenges for deployment on small devices like drones. Additionally, the algorithm's reliance on a 

singular training dataset may lead to overfitting. Future research will focus on validating the tracker 

across multiple datasets to further enhance its generalizability and performance. 
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1. Introduction 

Visual object tracking has always been a fundamental and challenging task in the fields of artificial 

intelligence and computer vision. In recent years, visual object tracking has found extensive 

applications in areas such as intelligent video surveillance, drones, robotics, and more [1]. However, 

real-world tracking scenarios often present challenges like low resolution, background interference, 

target deformations, occlusions, scale changes, and lighting variations. As a result, developing real-

time and accurate object tracking algorithms in the face of these challenges has become a hot topic 

and a formidable research task. 

The core problem of object tracking is to differentiate the foreground object from a complex 

background. Given the initial position of any target in the first frame, the tracker aims to 

successfully distinguish and locate that target in subsequent frames [2]. Traditional tracking 

algorithms from the last century, such as Mean Shift [3] and Kalman filtering, paved the way for 

tracking. The CSK algorithm proposed by Okada et al. [4] introduced cyclic shift samples to 

increase the number of training samples and improve template efficiency. The Kernelized 

Correlation Filter (KCF) algorithm, developed by Henriques et al. [5], utilized HOG image features 

as algorithm inputs and optimized the computational efficiency using a Gaussian kernel function, 

achieving a minor breakthrough in correlation filter-based tracking. Subsequently, Danelljan et al. 

introduced the Correlation Filter with Circulant Matrix (CCOT) and the Efficient Convolution 

Operators (ECO) algorithms [6,7]. These algorithms aimed to reduce the impact of boundary effects 

and enhance tracking performance by employing more efficient kernel functions, as well as multi-

feature fusion methods. 
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Traditional tracking algorithms have faced challenges such as insufficient feature extraction and 

limited precision in the network framework, making them less effective in handling complex 

scenarios like background interference and target deformations. In recent years, researchers have 

shown widespread interest in neural network frameworks with richer feature information and higher 

precision. One such algorithm is MDNet, proposed by Hyeonseob et al. [8], which is based on a 

Convolutional Neural Network (CNN) framework. MDNet uses video training to obtain a network 

structure capable of efficient binary classification and performs online updates. Another algorithm, 

TCNN, introduced by Ashutosh et al. [9], utilizes multiple convolutional networks (CNNs) to jointly 

represent the target state and determine the path for model updates within a decision tree. 

Subsequently, Siamese networks gained popularity due to their simplicity and efficiency. The 

SiamFC algorithm, developed by Luca Bertinetto et al. [10], is a Siamese Fully Convolutional 

Network. It utilizes two network branches, one for the template and the other for the target. By 

calculating similarity through correlation layers, it achieves good performance in terms of speed and 

accuracy, ranking first in the VOT2017[11] real-time challenge. 

While the SiamFC Siamese network tracker has achieved a certain level of tracking accuracy, it still 

faces some challenges. One of its limitations is that it uses a relatively shallow network, AlexNet 

[12], for extracting convolutional feature information, which results in less rich feature learning. 

SiamFC also forgoes the time-consuming online updating approach, making it less robust in 

handling complex scene variations and more susceptible to interference from background 

information, which can lead to tracking drift. 

The research team attempted to replace the shallow network AlexNet with deeper networks such as 

VGG [13] and ResNet [14]. However, the experimental results showed a decrease in performance. 

Upon investigation, it was found that these deeper networks were optimized for image classification 

tasks. In image classification tasks, the precise localization of specific objects is not highly weighted 

in the network. Therefore, they cannot be directly applied to tracking tasks.In neural network 

architecture, the receptive field [15] refers to the size of the region in the original image that is 

mapped to a pixel in the output feature map of each layer in a CNN. If the receptive field and the 

size of the target object differ significantly, it can lead to convergence difficulties and significantly 

impact algorithm performance.In image processing tasks, the stride of a neural network represents 

the sampling interval of the convolution kernel as it passes through the input feature map. The stride 

directly affects the accuracy of feature information processing in CNNs. 

This paper, based on the SiamFC tracking algorithm, conducted numerous experiments and found 

that the presence or absence of edge padding in CNNs has a significant impact on tracker 

performance. This effect is particularly pronounced when the tracked target is very close to the 

boundary of the candidate search region. The presence or absence of edge feature padding can lead 

to substantially different results in target localization. Consequently, the study concludes that in the 

task of object tracking, the neural network's receptive field, stride, and edge padding are the main 

factors influencing whether the use of deep network structures can improve tracking performance. 

Furthermore, adapting to changes in the target's appearance is often challenging, and obtaining an 

ideal representation of target feature information is a pressing issue for researchers. Past algorithms 

often designed a candidate set for multi-scale template matching. When generating candidate 

samples in the motion model, a large number of candidate boxes with varying sizes are generated, 

or tracking is performed on multiple targets of different scales, producing multiple predictions. The 

best result among these predictions is then chosen as the final tracking target. However, in 

optimizing object tracking models, classifier overfitting often occurs due to the insufficient training 

dataset, and this can lead to difficulties in accurately recognizing target changes during tracking, 

resulting in target loss in such update strategies. 
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This meta-learning network can accurately acquire target feature information and its changes with a 

small amount of sample data, enabling it to predict the most suitable target position in the next frame. 

By adaptively learning target size parameters through the meta-learning network and optimizing the 

iterative size appearance of target features and search areas, an adaptive target feature space is 

provided to the tracking network. This substantial improvement greatly enhances the system's 

performance. 

 

2. MDASiam tracker 

After extensive experimental work, this paper proposes an object tracking algorithm called 

MDASiam, which incorporates a meta-learning module. MDASiam utilizes a deeper CIResNet- 22 

network as the target feature extractor, effectively enhancing the discriminative capabilities of the 

network model. Additionally, it employs a meta-learning network to adaptively learn target feature 

scale parameters, iterating to generate the most suitable feature representation space for the tracking 

task. This ensures that the tracker can adapt to complex changes in the target's appearance, thereby 

improving the algorithm's tracking performance 

 

       

            

            

                

              

       

(1) The first step involves selecting the template region and the search region. "Target" represents 

the tracking target provided in the first frame, while the "Search Region" refers to the candidate 

search area determined by the algorithm based on the previous frame's target location. The size of 

the search candidate area is typically set to 1.5 to 2 times the size of the target region. Additionally, 

the algorithm chooses an appropriate search region based on the target's location. 

 Figure 1. Framework of the MDASiam algorithm
By optimizing through the meta-network, an adaptive appearance model is obtained. Then, using 
the Siamese network, similarity is computed to generate the correlation response maps between the 
target and candidate regions. The most likely position for the target in the current frame is predicted 
based on the maximum value in the correlation response map. As shown in Fig.1, the MDASiam 
network structure consists of three main components.
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(2) The second part of the network consists of the feature extraction layer. In this paper, an 

improved CIResNet-22 network is used to extract the initial target features. These target features 

extracted from both the target and search images are then passed to the meta-learning prediction 

network. This process results in obtaining more precise target features in terms of size and 

appearance, ensuring that the algorithm can adapt to various changes in the target's appearance. 

(3) The third part of the network is the correlation calculation module. It processes the final target 

features obtained from the previous layers through convolution to generate response maps. The 

highest score in the correlation response map represents the predicted position of the target in the 

current frame. 

2.1. MDASiam network improvement unit design 

2.1.1. Cropping-Inside Residual (CIR) 

In residual networks, residual units play a crucial role in enabling convolutional kernels to capture 

richer information representations. The residual unit is the most important module in a residual 

network. As shown in Fig.2(a), the original residual unit consists of three stacked convolutional 

layers with a skip connection. 

 
 

 

        

                

            

             

          

            

          

             

     

2.1.2. Cropping-Inside Residual with Downsampling (CIR-D) 

 

 Figure 2. CIR unit of the MDASiam algorithm
Based on research analysis, it was found that the feature padding in the original ResNet network 
significantly affects the performance of the Siamese network-based object tracker. To address this 
issue, the research team decided to remove the feature padding when using a residual network as the 
main network for feature extraction in the tracking algorithm. They applied an improved residual 
unit called Cropping-Inside Residual (CIR)[16], which trims the outermost part of the residual unit 
affected by the feature padding while retaining other valuable feature information. As shown in 
Fig.2(b), this improved network structure allows the object tracker to obtain a more rich feature 
representation, thereby enhancing its performance.
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As shown in Fig.3(b), similar to the Inner Cropping Residual Unit, cropping is performed at the end 

of the downsampling residual network to remove the outermost part while retaining other feature 

information. To ensure that even the outermost layers of the network can receive feature 

information, this paper designs the downsampling operation as a maximum pooling operation[17]. 

Additionally, the convolutional strides for the skip connections and bottleneck layers are set to 1 in 

order to maintain the stability of the network's internal structure performance. Through these 

operations, it is ensured that as the network depth increases, effective feature information is also 

collected, thus ensuring the improvement of network performance. 

 

2.1.3. Meta-learning networks and gradient information 

Gradients have found increasingly wide applications in image processing. As shown in Fig.4, the 

yellow box represents the tracking target. In the first column, the research team attempted to mask 

the target region with a black rectangle. In the second column, the deep red color represents regions 

with higher gradient values, and it is evident that there are significant gradient magnitudes in the 

occluded region of the target.To further investigate the role of gradients, in the third column, this 

paper conducted experiments in a scenario with a similar background interference, and it was found 

that even when the target and the background are similar, there are still significant differences in the 

gradients between them. Therefore, the research team concluded that gradient information can 

effectively represent changes in the target and the spatial relationship between the target and the 

background[19]. 

 

 

 

 

 

 

 Figure  3. CIR-D unit of the MDASiam algorithm
Within residual networks, there is a need for a structure that can effectively reduce the spatial size of 
feature maps while increasing the number of feature channels. Hence, another crucial component 
within residual networks, known as the Cropping-Inside Residual with Downsampling (CIR-D) 
block, has been introduced, as illustrated in Fig.3(a). This CIR-D unit is designed to downsample 
feature maps, enabling higher-level feature representations and contributing to improved network 
performance.Similarly, in order to mitigate the impact of feature padding on CIR-D, improvements 
to its network structure are required.
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The meta-learning network also generates sigmoid attention weights for each channel of the feature 

mapping to further adjust the feature representation space, and these weights can be applied by 

channel multiplication. 

 
 

 

         

              

        

          

              

     

 

3. Experimentation and Analysis 

The tracking task was carried out on the OTB100 dataset to assess the performance of the 

MDASiam algorithm. Additionally, the research team compared the test metric results of the 

MDASiam algorithm with those of relevant mainstream algorithms to verify whether its tracking 

performance meets expectations. As illustrated in Fig.6, MDASiam performs well on the OTB 

dataset. The videos from left to right include basketball, bird1, boy, and carscale. The tracked target 

is denoted by the green box, and the predicted target position in the current frame is indicated by the 

Matching 

network  

 
Meta-learner 

network  

 
Adaptive 

Feature Space 

 

Search 

 Figure 4. Gradient information
The meta-learning network provides specific target weights to the matching network, given the 
tracking target z and the context patch = {x1, … , xm} cropped around the target. In order to 
adapt the weights to the tracking target, this paper utilizes the iterative update based on the average 
negative gradient of the last layer's loss function in the matching network. The average negative 
gradient [20] is computed as follows：

 Figure 5. Schematic diagram of the meta-learning algorithm
In Fig.5, the target gradient from the final layer of the matching network is transferred to the 
meta-learning network, obtaining adaptive target features and search candidate region feature blocks. 
Through the meta-learning network, input weight calculations are performed without any iterative 
optimization, avoiding overfitting. With just a single forward pass, a rapidly adaptive target feature 
space can be constructed [21].
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yellow box. The yellow number in the top left corner of each frame represents the frame number in 

the video sequence. 

 
           

 
               

          

             

                

          

           

             

       

The experiment selected nine tracking algorithms for comparison on the OTB100 dataset, including 

the baseline algorithm SiamFC, deep convolutional neural network algorithms such as 

SiamRPN[22], DeepSRDCF, and correlation filter-based methods like Staple[23], CCOT, CFNet, 

FDSST, SRDCF, and the gradient feature-based GradNet. As shown in Fig. 7, the MDASiam 

algorithm outperforms the comparison algorithms in tracking success rate.For this algorithm, at an 

overlap rate of 0.5 and a center error of 20, the success rate and precision rate are 0.849 and 0.869, 

respectively, both higher than most comparison algorithms. Compared to the SiamFC algorithm that 

uses AlexNet as the backbone network, the success rate has increased by 15.5%, and the precision 

rate has improved by 12.0%. This further validates the superior tracking performance of the 

MDASiam algorithm. 

In order to further investigate the strengths and weaknesses of the algorithm, a specific evaluation 

was conducted to assess the performance of the MDASiam target tracking algorithm in various 

complex scenarios, comparing it with relevant mainstream algorithms. Fig.8 illustrates the success 

rate and precision rate of each algorithm in 11 complex scenarios, including fast motion, 

background interference, motion blur, and target deformation. In these diverse and challenging 

scenarios, the MDASiam algorithm demonstrates excellent tracking performance, highlighting its 

capability to handle complex tracking situations effectively. 

 

 

Figure 6. Tracking results of the MDASiam on OTB video

 Figure 7. Comparison of precision rate and success rate of each algorithm on OTB100
The performance of the tracking algorithm is evaluated using two metrics: Precision Rate and 
Success Rate. Precision Rate is defined as the success tracking rate within a given 20-pixel 
threshold for the Euclidean distance error between the predicted box and the ground truth box center. 
Success Rate is calculated by measuring the overlap of pixels between the algorithm's predicted box 
and the ground truth box region.Firstly, a one-time analysis is employed to quantitatively assess the 
distance precision and threshold success rate of the tracking algorithm MDASiam, comparing it 
with mainstream trackers on the OTB100 dataset.
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（a）fast motion   （b）background clutter （c）motion blur （d）deformation 

 
（e）illumination variation （f）in-plane rotation （g）low resolution （h）occlusion 

 
      

          

As shown in the figure, the MDASiam tracking algorithm exhibits significantly improved 

performance over the baseline SiamFC algorithm in the mentioned 11 scenarios. Moreover, it 

performs optimally or sub-optimally in scenarios involving fast motion, background interference, 

motion blur, target deformation, in-plane rotation, and scale changes. Particularly noteworthy is its 

outstanding performance in handling in-plane rotation. This further validates the strong 

discriminative capability of the MDASiam tracking algorithm, showcasing its ability to discern and 

track targets effectively in a variety of complex scenarios. 

 

（i）out-of-plane rotation （j）out of view （k）scale variation 
Figure 8. Tracking comparison of each algorithm on OTB100
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4. Conclusion 

To enhance the accuracy of the Siamese network-based target tracking algorithm, a Siamese 

network tracking algorithm called MDASiam is proposed, incorporating a meta-learning module. It 

employs a deeper CIResNet-22 network to extract target features, providing primary features to the 

matching network, thus effectively improving the discriminative capability of the network model. 

Simultaneously, the meta-learning network is utilized to adaptively learn target feature scale 

parameters, iteratively generating a feature representation space that best suits the tracking task. This 

ensures that the tracker can adapt to the complex variations in the appearance of the target. 

The experiments on the OTB dataset demonstrate that the MDASiam tracking algorithm exhibits 

excellent tracking performance and maintains robustness across various complex scenarios. 

However, it involves a relatively deep network framework, which may consume significant 

computational resources during runtime. If applied to small devices such as drones, it demands high-

performance onboard computers. Additionally, the algorithm's training dataset is singular, which 

may lead to overfitting. In future work, the plan is to validate the tracker on different datasets to 

enhance its performance. 
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