Improving Visual Object Tracking: MDASiam - A Fusion of Meta-Learning and Deep Network Architectures for Robust Performance

Quinlan Pierce

University of Pittsburgh, USA

quinlan.pierce870@pitt.edu

Abstract:

Visual object tracking remains a fundamental yet challenging task in artificial intelligence and computer vision, with applications spanning intelligent video surveillance, drones, and robotics. Traditional tracking algorithms often struggle with complex real-world scenarios, including background interference, target deformations, and occlusions. While Siamese networks like SiamFC have shown promise, their reliance on shallow networks like AlexNet limits their ability to handle intricate tracking tasks. This study introduces the MDASiam algorithm, which enhances the SiamFC framework by integrating a deeper CIResNet-22 network and a meta-learning module. The deeper network architecture allows for more precise feature extraction, while the meta-learning module adaptively learns target feature scale parameters, creating an optimal feature representation space for tracking. Experimental results on the OTB dataset demonstrate that MDASiam significantly improves tracking accuracy and robustness in diverse and complex scenarios. However, the increased depth of the network requires substantial computational resources, which poses challenges for deployment on small devices like drones. Additionally, the algorithm's reliance on a singular training dataset may lead to overfitting. Future research will focus on validating the tracker across multiple datasets to further enhance its generalizability and performance.

Keywords:

Visual object tracking, Convolutional neural network, Siamese network, Meta learning.

1. Introduction

Visual object tracking has always been a fundamental and challenging task in the fields of artificial intelligence and computer vision. In recent years, visual object tracking has found extensive applications in areas such as intelligent video surveillance, drones, robotics, and more [1]. However, real-world tracking scenarios often present challenges like low resolution, background interference, target deformations, occlusions, scale changes, and lighting variations. As a result, developing realtime and accurate object tracking algorithms in the face of these challenges has become a hot topic and a formidable research task.

The core problem of object tracking is to differentiate the foreground object from a complex background. Given the initial position of any target in the first frame, the tracker aims to successfully distinguish and locate that target in subsequent frames [2]. Traditional tracking algorithms from the last century, such as Mean Shift [3] and Kalman filtering, paved the way for tracking. The CSK algorithm proposed by Okada et al. [4] introduced cyclic shift samples to increase the number of training samples and improve template efficiency. The Kernelized Correlation Filter (KCF) algorithm, developed by Henriques et al. [5], utilized HOG image features as algorithm inputs and optimized the computational efficiency using a Gaussian kernel function, achieving a minor breakthrough in correlation filter-based tracking. Subsequently, Danelljan et al. introduced the Correlation Filter with Circulant Matrix (CCOT) and the Efficient Convolution Operators (ECO) algorithms [6,7]. These algorithms aimed to reduce the impact of boundary effects and enhance tracking performance by employing more efficient kernel functions, as well as multifeature fusion methods.

Traditional tracking algorithms have faced challenges such as insufficient feature extraction and limited precision in the network framework, making them less effective in handling complex scenarios like background interference and target deformations. In recent years, researchers have shown widespread interest in neural network frameworks with richer feature information and higher precision. One such algorithm is MDNet, proposed by Hyeonseob et al. [8], which is based on a Convolutional Neural Network (CNN) framework. MDNet uses video training to obtain a network structure capable of efficient binary classification and performs online updates. Another algorithm, TCNN, introduced by Ashutosh et al. [9], utilizes multiple convolutional networks (CNNs) to jointly represent the target state and determine the path for model updates within a decision tree. Subsequently, Siamese networks gained popularity due to their simplicity and efficiency. The SiamFC algorithm, developed by Luca Bertinetto et al. [10], is a Siamese Fully Convolutional Network. It utilizes two network branches, one for the template and the other for the target. By calculating similarity through correlation layers, it achieves good performance in terms of speed and accuracy, ranking first in the VOT2017[11] real-time challenge.

While the SiamFC Siamese network tracker has achieved a certain level of tracking accuracy, itstill faces some challenges. One of its limitations is that it uses a relatively shallow network, AlexNet [12], for extracting convolutional feature information, which results in less rich feature learning. SiamFC also forgoes the time-consuming online updating approach, making it less robust in handling complex scene variations and more susceptible to interference from background information, which can lead to tracking drift.

The research team attempted to replace the shallow network AlexNet with deeper networks such as VGG [13] and ResNet [14]. However, the experimental results showed a decrease in performance. Upon investigation, it was found that these deeper networks were optimized for image classification tasks. In image classification tasks, the precise localization of specific objects is not highly weighted in the network. Therefore, they cannot be directly applied to tracking tasks.In neural network architecture, the receptive field [15] refers to the size of the region in the original image that is mapped to a pixel in the output feature map of each layer in a CNN. If the receptive field and the size of the target object differ significantly, it can lead to convergence difficulties and significantly impact algorithm performance.In image processing tasks, the stride of a neural network represents the sampling interval of the convolution kernel as it passes through the input feature map. The stride directly affects the accuracy of feature information processing in CNNs.

This paper, based on the SiamFC tracking algorithm, conducted numerous experiments and found that the presence or absence of edge padding in CNNs has a significant impact on tracker performance. This effect is particularly pronounced when the tracked target is very close to the boundary of the candidate search region. The presence or absence of edge feature padding can lead to substantially different results in target localization. Consequently, the study concludes that in the task of object tracking, the neural network's receptive field, stride, and edge padding are the main factors influencing whether the use of deep network structures can improve tracking performance. Furthermore, adapting to changes in the target's appearance is often challenging, and obtaining an ideal representation of target feature information is a pressing issue for researchers. Past algorithms often designed a candidate set for multi-scale template matching. When generating candidate samples in the motion model, a large number of candidate boxes with varying sizes are generated, or tracking is performed on multiple targetsof different scales, producing multiple predictions. The best result among these predictions is then chosen as the final tracking target. However, in optimizing object tracking models, classifier overfitting often occurs due to the insufficient training dataset, and this can lead to difficulties in accurately recognizing target changes during tracking, resulting in target loss in such update strategies.

This meta-learning network can accurately acquire target feature information and its changes with a small amount of sample data, enabling it to predict the most suitable target position in the next frame. By adaptively learning target size parameters through the meta-learning network and optimizing the iterative size appearance of target features and search areas, an adaptive target feature space is provided to the tracking network. This substantial improvement greatly enhances the system's performance.

2. MDASiam tracker

After extensive experimental work, this paper proposes an object tracking algorithm called MDASiam, which incorporates a meta-learning module. MDASiam utilizes a deeper CIResNet- 22 network as the target feature extractor, effectively enhancing the discriminative capabilities of the network model. Additionally, it employs a meta-learning network to adaptively learn target feature scale parameters, iterating to generate the most suitable feature representation space for the tracking task. This ensures that the tracker can adapt to complex changes in the target's appearance, thereby improving the algorithm's tracking performance

Figure 1. Framework of the MDASiam algorithm

 By optimizing through the meta-network, an adaptive appearance model is obtained. Then, using the Siamese network, similarity is computed to generate the correlation response maps between the target and candidate regions. The most likely position for the target in the current frame is predicted based on the maximum value in the correlation response map. As shown in Fig.1, the MDASiam network structure consists of three main components.

(1) The first step involves selecting the template region and the search region. "Target" represents the tracking target provided in the first frame, while the "Search Region" refers to the candidate search area determined by the algorithm based on the previous frame's target location. The size of the search candidate area is typically set to 1.5 to 2 times the size of the target region. Additionally, the algorithm chooses an appropriate search region based on the target's location.

(2) The second part of the network consists of the feature extraction layer. In this paper, an improved CIResNet-22 network is used to extract the initial target features. These target features extracted from both the target and search images are then passed to the meta-learning prediction network. This process results in obtaining more precise target features in terms of size and appearance, ensuring that the algorithm can adapt to various changes in the target's appearance.

(3) The third part of the network is the correlation calculation module. It processes the final target features obtained from the previous layers through convolution to generate response maps. The highest score in the correlation response map represents the predicted position of the target in the current frame.

2.1. MDASiam network improvement unit design

2.1.1. Cropping-Inside Residual (CIR)

In residual networks, residual units play a crucial role in enabling convolutional kernels to capture richer information representations. The residual unit is the most important module in a residual network. As shown in Fig.2(a), the original residual unit consists of three stacked convolutional layers with a skip connection.

Figure 2. CIR unit of the MDASiam algorithm

 significantly affects the performance of the Siamese network-based object tracker. To address this issue, the research team decided to remove the feature padding when using a residual network as the main network for feature extraction in the tracking algorithm. They applied an improved residual unit called Cropping-Inside Residual (CIR)[16], which trims the outermost part of the residual unit affected by the feature padding while retaining other valuable feature information. As shown in Fig.2(b), this improved network structure allows the object tracker to obtain a more rich feature Based on research analysis, it was found that the feature padding in the original ResNet network representation, thereby enhancing its performance.

2.1.2. Cropping-Inside Residual with Downsampling (CIR-D)

Figure 3. CIR-D unit of the MDASiam algorithm

 Within residual networks, there is a need for a structure that can effectively reduce the spatial size of feature maps while increasing the number of feature channels. Hence, another crucial component block, has been introduced, as illustrated in Fig.3(a). This CIR-D unit is designed to downsample performance.Similarly, in order to mitigate the impact of feature padding on CIR-D, improvements within residual networks, known as the Cropping-Inside Residual with Downsampling (CIR-D) feature maps, enabling higher-level feature representations and contributing to improved network to its network structure are required.

As shown in Fig.3(b), similar to the Inner Cropping Residual Unit, cropping is performed at the end of the downsampling residual network to remove the outermost part while retaining other feature information. To ensure that even the outermost layers of the network can receive feature information, this paper designs the downsampling operation as a maximum pooling operation[17]. Additionally, the convolutional strides for the skip connections and bottleneck layers are set to 1 in order to maintain the stability of the network's internal structure performance. Through these operations, it is ensured that as the network depth increases, effective feature information is also collected, thus ensuring the improvement of network performance.

2.1.3. Meta-learning networks and gradient information

Gradients have found increasingly wide applications in image processing. As shown in Fig.4, the yellow box represents the tracking target. In the first column, the research team attempted to mask the target region with a black rectangle. In the second column, the deep red color represents regions with higher gradient values, and it is evident that there are significant gradient magnitudes in the occluded region of the target.To further investigate the role of gradients, in the third column, this paper conducted experiments in a scenario with a similar background interference, and it was found that even when the target and the background are similar, there are still significant differences in the gradients between them. Therefore, the research team concluded that gradient information can effectively represent changes in the target and the spatial relationship between the target and the background[19].

Figure 4. Gradient information

tracking target *z* and the context patch $x_{\delta} = \{x_1, \ldots, x_m\}$ cropped around the target. In order to adapt the weights to the tracking target, this paper utilizes the iterative update based on the average negative gradient of the last layer's loss function in the matching network. The average negative The meta-learning network provides specific target weights to the matching network, given the gradient δ [20] is computed as follows:

$$
\delta = \sum_{I=1}^{M} -\frac{1}{M} \frac{\partial l(f_W(z, x_i), \hat{y}_i)}{\partial w_N}
$$

The meta-learning network also generates sigmoid attention weights for each channel of the feature mapping to further adjust the feature representation space, and these weights can be applied by channel multiplication.

Figure 5. Schematic diagram of the meta-learning algorithm

In Fig.5, the target gradient δ from the final layer of the matching network is transferred to the meta-learning network, obtaining adaptive target features and search candidate region featureblocks. Through the meta-learning network, input weight calculations are performed without any iterative optimization, avoiding overfitting. With just a single forward pass, a rapidly adaptive target feature space can be constructed [21].

3. Experimentation and Analysis

The tracking task was carried out on the OTB100 dataset to assess the performance of the MDASiam algorithm. Additionally, the research team compared the test metric results of the MDASiam algorithm with those of relevant mainstream algorithms to verify whether its tracking performance meets expectations. As illustrated in Fig.6, MDASiam performs well on the OTB dataset. The videos from left to right include basketball, bird1, boy, and carscale. The tracked target is denoted by the green box, and the predicted target position in the current frame is indicated by the

yellow box. The yellow number in the top left corner of each frame represents the frame number in the video sequence.

Figure 7. Comparison of precision rate and success rate of each algorithm on OTB100

 10

 $\overline{20}$

 30

Location error threshold

 40

 $0\frac{1}{0}$

 0.2

 0.4

 0.6

Overlap threshold

 0.8

 The performance of the tracking algorithm is evaluated using two metrics: Precision Rate and Success Rate. Precision Rate is defined as the success tracking rate within a given 20-pixel Success Rate is calculated by measuring the overlap of pixels between the algorithm's predicted box and the ground truth box region.Firstly, a one-time analysis is employed to quantitatively assess the threshold for the Euclidean distance error between the predicted box and the ground truth box center. distance precision and threshold success rate of the tracking algorithm MDASiam, comparing it with mainstream trackers on the OTB100 dataset.

The experiment selected nine tracking algorithms for comparison on the OTB100 dataset, including the baseline algorithm SiamFC, deep convolutional neural network algorithms such as SiamRPN[22], DeepSRDCF, and correlation filter-based methods like Staple[23], CCOT, CFNet, FDSST, SRDCF, and the gradient feature-based GradNet. As shown in Fig. 7, the MDASiam algorithm outperforms the comparison algorithms in tracking success rate.For this algorithm, at an overlap rate of 0.5 and a center error of 20, the success rate and precision rate are 0.849 and 0.869, respectively, both higher than most comparison algorithms. Compared to the SiamFC algorithm that uses AlexNet as the backbone network, the success rate has increased by 15.5%, and the precision rate has improved by 12.0%. This further validates the superior tracking performance of the MDASiam algorithm.

In order to further investigate the strengths and weaknesses of the algorithm, a specific evaluation was conducted to assess the performance of the MDASiam target tracking algorithm in various complex scenarios, comparing it with relevant mainstream algorithms. Fig.8 illustrates the success rate and precision rate of each algorithm in 11 complex scenarios, including fast motion, background interference, motion blur, and target deformation. In these diverse and challenging scenarios, the MDASiam algorithm demonstrates excellent tracking performance, highlighting its capability to handle complex tracking situations effectively.

As shown in the figure, the MDASiam tracking algorithm exhibits significantly improved performance over the baseline SiamFC algorithm in the mentioned 11 scenarios. Moreover, it performs optimally or sub-optimally in scenarios involving fast motion, background interference, motion blur, target deformation, in-plane rotation, and scale changes. Particularly noteworthy is its outstanding performance in handling in-plane rotation. This further validates the strong discriminative capability of the MDASiam tracking algorithm, showcasing its ability to discern and track targets effectively in a variety of complex scenarios.

4. Conclusion

To enhance the accuracy of the Siamese network-based target tracking algorithm, a Siamese network tracking algorithm called MDASiam is proposed, incorporating a meta-learning module. It employs a deeper CIResNet-22 network to extract target features, providing primary features to the matching network, thus effectively improving the discriminative capability of the network model. Simultaneously, the meta-learning network is utilized to adaptively learn target feature scale parameters, iteratively generating a feature representation space that bestsuits the tracking task. This ensures that the tracker can adapt to the complex variations in theappearance of the target.

The experiments on the OTB dataset demonstrate that the MDASiam tracking algorithm exhibits excellent tracking performance and maintains robustness across various complex scenarios. However, it involves a relatively deep network framework, which may consume significant computational resources during runtime. If applied to small devices such as drones,it demands highperformance onboard computers. Additionally, the algorithm's training dataset is singular, which may lead to overfitting. In future work, the plan is to validate the tracker on different datasets to enhance its performance.

References

- [1] J.H.Tan, W.Yin, L.Liu, et al.DenseNetsiamese network with global context feature module for objecttracking[J]. Journal of Electronics & Information Technology, 2021, 43(01): 179–186.
- [2] Z.W.He, J.H.Nie, C.J.Du, et al.Siamese Object Tracking Based on Key Feature Information Perceptionand Online Adaptive Masking [J]. Journal of Electronics & Information Technology, 2022, 44(05):1714-1722.
- [3] Irene Anindaputri Iswanto, Tan William Choa, Bin Li.Object tracking based on meanshift and particle-kalman filt er algorithm with multi features[J].Procedia Computer Science , 2019.
- [4] Okada M, Nada S, Yamanashi Y, et al. CSK: a protein-tyrosine kinase involved in regulation of src family kinases[J]. Journal of Biological Chemistry, 1991, 266(36): 24249-24252.
- [5] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J].IEEE transactions on pattern analysis and machine intelligence, 2014, 37(3): 583-596.
- [6] Danelljan M, Robinson A, Khan F S, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking[C] //European conference on computer vision. Springer,Cham, 2016: 472-488.
- [7] Danelljan M, Bhat G, Shahbaz Khan F, et al. Eco: Efficient convolution operators for tracking[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 6638- 6646.
- [8] H. Nam and B. Han, Learning Multi-domain Convolutional Neural Networks for Visual Tracking, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 4293- 4302.
- [9] A. Pandey and D. Wang, "TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, 6875-6879.
- [10] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]. In: European conference on computer vision. Springer, Cham, 2016: 850- 865.
- [11] Kristan M, Leonardis A, Matas J, et al. The visual object tracking VOT2017 challenge results. In Proceedings - 2017 IEEE International Conference on Computer Vision Workshops,2017.
- [12] Alom M Z, Taha T M, Yakopcic C, et al. The history began from alexnet: A comprehensive survey ondeep learning approaches[J]. arXiv preprint arXiv:1803.01164, 2018.
- [13] Yu W, Yang K, Bai Y, et al. Visualizing and comparing AlexNet and VGG using deconvolutional layers $[C]/$ /Proceedings of the 33 rd International Conference on Machine Learning. 2016.
- [14] Wu Z, Shen C, Van Den Hengel A. Wider or deeper: Revisiting the resnet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119-133.
- [15] Traore B B, Kamsu-Foguem B, Tangara F. Deep convolution neural network for image recognition[J].Ecological Informatics, 2018, 48: 257-268
- [16] Zhang Z, Peng H. Deeper and wider siamese networks for realtime visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:4591-4600.
- [17] Yang K, Song H, Zhang K, et al. Deeper Siamese network with multi-level feature fusion for real-timevisual tracking[J]. Electronics Letters, 2019, 55(13): 742-745.
- [18] Zhang D, Zheng Z. Joint Representation Learning with Deep Quadruplet Network for Real-Time Visual Tracking[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020:1-8.
- [19] Li P, Chen B, Ouyang W, et al. Gradnet: Gradient-guided network for visual object tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6162-6171.
- [20] Asadi Soodabeh,Povh Janez. A Block Coordinate Descent-Based Projected Gradient Algorithm for Orthogonal Non-Negative Matrix Factorization[J]. Mathematics,2021,9(5).
- [21] Choi J, Kwon J, Lee K M. Deep meta learning for real-time target-aware visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 911-920.
- [22] Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8971-8980.
- [23] Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2805-2813.