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Abstract: 
To detect fast radio burst (FRB) signals from the observational data obtained by FAST radio 

telescopes, this study develops a recognition system utilizing deep learning object detection 

algorithms. The system integrates an incoherent achromatization algorithm with the YOLO series 

target recognition algorithm to identify FRB signals, offering users an intuitive graphical interface. 

To accommodate varying computational capabilities, the system allows the selection of different 

algorithm models. Experimental results demonstrate that the system achieves a recall rate of 86% 

and an accuracy of 83% when tested on the real-world dataset FRB20201124A. 
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1. Introduction 
Fast radio bursts (FRB) are astronomical phenomena of highly dispersive, pulsed, radio radiation 

that lasts only milliseconds [1]. This astronomical phenomenon was first discovered in 2007 by 

Lorimer et al. when they analyzed historical data from pulsar surveys at the Parkes Observatory in 

Australia[2]. Fast radio bursts have also been observed by the Fivehundred‐ meter Aperture 

Spherical Radio Telescope (FAST) [3]. The manual processing of observation data is not efficient, 

so automatic identification technology needs to be used to improve work efficiency. 

Deep learning object detection is an efficient automatic recognition method for FRB signal 

recognition. In this method, the frequency time intensity data is extracted from the observation data 

file, and then the incoherent dispersion algorithm is used to generate the dispersion time intensity 

data. Thirdly, the method utilizes the sliding window method to plot the dispersion time intensity 

image, where the FRB signal is in the shape of a bow. Furthermore, the method uses the deep 

learning object detection model to perform image classification and bounding box regression. 

Finally, the method uses the bounding box coordinates to calculate the position of the core of the 

"bowtie", and then obtains the occurrence time and dispersion value of the FRB signal.  

Compared with the traditional software system, the FRB signal recognition system based on deep 

learning object detection has higher accuracy and broader application prospects. Traditionally, an 

automated, high‐performance software system based on the achromatic dispersion theory has been 

used to search for FRB signals. Such as HEIMDALL [4], Amber [5], and Presto [6]. Due to the 

effects of RF interference, these software systems are challenged with false positives due to noise 

and RF interference. The FRB signal recognition system based on deep learning object detection 

can identify FRB signals more accurately and robustly, so as to obtain better performance.In this 

article, we will first introduce the overall framework design of the system in Chapter 2. 

Subsequently, in Chapter 3, this paper will delve into the design of basic data processing 

algorithms, including key steps such as incoherent dispersion algorithms and sliding window 

drawing algorithms.

http://www.mfacademia.org/index.php/jcssa


Journal of computer science and software applications  

https://www.mfacademia.org/index.php/jcssa 

ISSN:2377-0430  
Vol. 4, No. 6, 2024 

   

 
 

2 

                             

  

 

Then, in Chapter 4, this article will explain the design principles and performance test results of the 

recognition algorithm. In Chapter 5, this article describes the methods and results of system testing. 

Finally, this article will summarize the system design process and look forward to possible future 

improvements and expansions. 

2. System Framework Design 
The panorama of the system is shown in Figure 1, the FRB signal recognition system integrates a 

complete workflow, including the preparation of training data, the training of the recognition model 

and the inference analysis of the model, which is mainly composed of three parts: data production 

module, model training module and model inference module. The data manufacturing module 

provides a dataset for the model training module, and the model training module provides a trained 

model for the model inference module. The model inference module has a friendly graphical system 

interface and is responsible for providing users with interactive model inference services. 

 

Figure 1. Panorama of the FRB signal recognition system 

 

2.1. Data Manufacturing Module 

The framework diagram of the data manufacturing module is shown in Figure 2, and making data is 

a key process to prepare the dataset for the model training module. Before proceeding with this 

process, the user needs to prepare the observation data in advance. This data is usually saved in the 

FITS file format, which is a file format specifically designed for astronomical data to store and 

exchange data. In addition, the user needs to fill in the detailed information about the FRB signal 

accurately in the database. 

This module begins with an important step: checking the data integrity and user‐submitted 

information for consistency, and stopping the workflow as soon as errors or mismatches are found. 

After verifying that the data is correct, the module continues its workflow to extract key 

observations from the observation data file. Next, the user is prompted to select a function: to 

process real data or to make simulated data. If the user decides to create analog data, the module 

will first exclude the FRB signal data from the observed data and create background data with only 

RF interference and negative samples. The module then injects FRB signal data into the background 

data and writes the information of the FRB signal to the database. After the user chooses to process 

the real data or complete the analog FRB signal injection, the module will perform incoherent 

dedispersion processing with a high‐efficiency graphics card based on the information stored in the 

database to obtain the dispersion time intensity data after the dispersion is corrected. Once this data 

has been processed, the module performs the final task, which is to plot the dispersion temporal 

intensity using the sliding window technique. This process is not only efficient, but also provides 

an accurate and reliable view of the data for model training.
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Figure 2. Framework diagram of the data manufacturing module 

 

2.2. Model Training Module 

Figure 3 shows the framework diagram of the model training module, which is based on the 

MMYOLO toolbox [7], which is an open‐source algorithm tool of the YOLO series based on 

PyTorch and MMDetection. Users only need to prepare a dataset in accordance with the COCO 

format and write a configuration file to complete the model training easily. The workflow of the 

toolbox is as follows: the user‐submitted configuration file and dataset are first checked for errors, 

and if there are errors, the training is stopped. Then, the object detection model is trained based on 

the information of the configuration file. After the training is completed, the generated weight file 

can be converted from PyTorch format to ONNX format by the EasyDeploy tool, so that it can be 

deployed using the TensorRT framework later. 

 

Figure 3. Framework diagram of the model training module 

2.3. Model Inference Module 

As shown in Figure 4, the model inference module is a powerful tool that provides a variety of 

model algorithms for users to choose from, including three types of YOLOv8n, YOLOv8s, and 

YOLOv8m. When the user selects a specific observation file or folder and triggers the inference 

process, the module first verifies that the selected file is indeed the observation. The uniqueness of 

the file is then checked by the MD5 encryption algorithm, and if it is found that the file has been 

pre‐processed, the result of the processing that is already in the database is immediately available, 

thus avoiding duplication of effort. 

If the file is not inferred, the module proceeds to the next step, which is to extract key information 
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from the observed data and perform incoherent dedispersion processing in the range of 100 pc·cm‐3 

to 2000 pc·cm‐3 for Dispersion Measure (DM). Next, the sliding window technique is used to 

generate a dispersion time intensity plot for each observation file for further analysis. On this basis, 

with the help of selected object detection models, FRB signals can be quickly and comprehensively 

identified from the data. The dispersion value and signal‐to‐noise ratio of each FRB signal are 

carefully calculated, and detailed FRB signal information is recorded in a database to lay the 

foundation for future screening work and scientific research. In addition, the model inference 

module is equipped with a QT5‐based graphical user interface, where the results of all back‐end 

processing will be clearly displayed, allowing users to easily view and analyze the data. This not only 

makes the user's operation smooth and convenient, but also greatly improves the work efficiency. 

 

Figure 4. Model inference module framework 

 

3. Basic Data Processing Algorithm Design 

3.1. Incoherent Achromatic Dispersion Algorithm 

The training data of the object detection model used in this system are derived from public datasets 

[8] and FRB20201124A [9]. Typically, the observation file of each FAST contains data from 4096 

channels, 131072 sampling intervals, and four polarization modes. The sum of horizontally 

polarized and vertically polarized data is used as the frequency time intensity observation data.  

When the FRB signal propagates in space, the speed is reduced due to the influence of interstellar  

dispersion, and the propagation speed of high‐frequency radio waves is faster than that of low‐

frequency, so the time for high‐frequency and low‐frequency electromagnetic waves to reach the 

radio telescope is inconsistent, and the high‐frequency signal arrives first and the low‐frequency 

signal arrives later. Dispersion effects can lead to reduced frequency resolution, signal distortion, 

and impaired interferometric observations in radio observations. The incoherent dispersion 

algorithm calculates the delay time for each channel according to the dispersion formula, then adds 

the delay of each channel and superimposes all channels on top of each other to eliminate the 

dispersion effect of the data. In recent years, with the increase of dispersion, data channels, and 

sampling, the computational complexity of incoherent dispersion algorithms has increased 

dramatically, and traditional computing platforms cannot meet the demand. The programmability 

and parallel processing capability of the graphics processor are continuously improved, and the data 

processing capacity of the whole system is significantly improved after the addition of the central 

processing unit + graphics processor hybrid computing system. High‐performance GPU clusters 

can provide powerful computing resources to meet the real‐time processing requirements of 

massive astronomical data and solve the problem that achromatic algorithms are computationally 

large and cannot be processed in real time [10]. The signal after adjusting the time delay is summed 

at all effective frequencies to obtain the dispersion time intensity data. 

The principle of incoherent achromatic dispersion is shown in Equation (1), Equation (2) and Figure 

5. Figure 5 illustrates the process of incoherent achromatization, Figure 5(a) is not achromatic, 

Figure 5(b) is the result of the achromatic process, and the horizontal and vertical axes of Figure 5 
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are the time and frequency axes, respectively. 
 

                               (1) 

 

                         (2) 
 

Equation (1) is the dispersion delay formula, D is the dispersion constant, D = 4.15times103 MHz2 

·pc‐1 ·cm3 ·s, DM is the measured dispersion amount, v1 and v2 are the two center frequencies, and 

(t2 ‐ t1) are the delay of the two center frequencies. As shown in equation (2), the end time of the 

FRB signal can be found by using the dispersion delay formula under the premise that the 

occurrence time, frequency range and dispersion value of the FRB signal are known. 
 

Figure 5. Schematic diagram of the incoherent dispersion algorithm 

3.2. Sliding Window Drawing Algorithm 

An example of a dispersion time intensity plot is shown in Figure 6. In the process of testing, this  

paper finds that the original recognition model is not ideal for the recognition of the "bow" pattern in 

the edge area of the image. In order to improve the accuracy, this paper decided to use the sliding 

window method for drawing. First, the width of the sliding window is set to 7200 sampling intervals 

and the height is 360 pc·cm‐3, and the sliding step is set to 6200 sampling intervals horizontally and 

310 pc·cm‐3 vertically. Then, in the direction of increasing time and the amount of dispersion, the 

intensity of each dispersion time is plotted step by step. 

Additional processing of image data is required before and after drawing. Before image drawing, the 

image data is decentralized and standardized, and different features are ensured to have the same 

scale in deep learning, which accelerates the convergence speed of gradient descent and improves 

the stability and efficiency of model training. After the image is drawn, add the name of the source 

observation file, the start time of the image data, and the start value of the dispersion measurement 

of the image data in the metadata partition of the PNG image, so that the occurrence time of the FRB 

pulse signal and the DM value of the FRB signal can be calculated during the image inference 

process. 
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Figure 6. Dispersion time intensity plot of a real FRB20201124A pulse 

3.3. Make Analog Data Algorithms 

Currently, the number of FRB data samples available for deep learning model training is still 

limited. Although there are similarities between pulsar single pulse signals and FRB signals in the 

Milky Way, directly using such pulsar signals as training data may lead to the problem of 

overfitting the model to pulsar characteristics [11]. In this study, based on the simulation method 

proposed by Connor et al., the convolution operation of Gaussian function and scattering profile is 

used to construct FRB pulse profiles on different frequency channels [11]. Subsequently, it is 

embedded in real astronomical observation data that contains only noise signals and interference 

signals. 

In this study, 9000 simulated FRB samples with DM values ranging from 100 pc·cm‐3 to 2000 

pc·cm‐3 were generated and stored in a database, as shown in Table 1. 

 

Table 1: Parameters for creating simulated FRB signals 

Parameter Distribution Range 

Fluence (Jy ms) Log‐normal μ=3.5, σ=1 

DM (pc cm‐3) Uniform 100, 2000 

Width (ms) Uniform 0.5, 50 

Spectral Index Uniform ‐4,4 

Scattering Timescale Uniform 0, Width 

4. Design and Implementation of FRB Recognition Algorithm 

The FRB signal recognition model is derived from the YOLOv8 series. YOLO means that you only 

need to browse once to identify the category and location of the object in the picture. YOLOv8 is an 

efficient object detection algorithm that uses a single deep learning model to achieve end‐ to‐end 

prediction from image input to object bounding boxes and category labels. Through a neural 

network, it segments the image into grids and simultaneously performs confidence scoring and 

categorical probability calculations on multiple bounding boxes within the grid. YOLOv8 uses 

multi‐scale prediction and improved loss function to optimize detection accuracy, and applies non‐

maximum suppression to remove redundant detection to ensure a balance between real‐time 

performance and high accuracy, which is suitable for object detection tasks in various real‐world 

scenarios. 
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In this study, 9000 simulation data were used as the training and validation sets. In addition, 1000 

positive samples with signal‐to‐noise ratios greater than 8 were selected from the FRB 20201124A 

observation data of FAST in April and May 2021 as the test set. Table 2 lists the details. 

 

Table 2: Design of training, validation, and test sets 
type quantity remark 

Training set 7000 Simulated data 

Validation set 2000 Simulated data 

Test set 1000 Real data 

 

Table 3 shows the performance test results of the three algorithms in the FRB20201124A real data 

test set, and the accuracy‐recall curve of YOLOv8n is shown in Figure 7. When selecting the object 

detection model, accuracy (P) and recall (R) are often used as evaluation indexes, and are calculated 

by equations (3) and (4). Among them, TP stands for the true example, that is, the number of targets 

correctly detected by the model; FP stands for false positive, i.e., the number of non‐targets that are 

incorrectly predicted as targets; FN stands for false negative examples, i.e., the number of 

misjudged targets as non‐targets. 

P =
  TP  

TP + FP 

R =
  TP  

TP+FN 

(3) 

 

(4) 

 

Table 3: Performance test results of the three algorithms 
model P R 

YOLOv8n 83.83% 86.71% 

YOLOv8s 83.81% 87.10% 

YOLOv8m 84.63% 87.13% 

 

Figure 7. Accuracy‐recall curves of YOLOv8n 

 

The occurrence time and dispersion value of the FRB signal are obtained by coordinate calculation. 

Firstly, the object detection model is used to infer the dispersion time intensity image, and the 

coordinates (x, y) of the four corners of the FRB pulse and the FRB pulse bounding box are 

obtained. Again, the exact location of the center point of the FRB pulse is determined by the 

average calculation of the coordinates of the upper left and lower right corners. Next, the PNG 

image metadata was extracted to obtain the start time of the image data (t0) and the starting value of 

the dispersion measurement of the image data (dm0). Finally, as shown in Equations (5) and (6), the 

occurrence time and dispersion values of the FRB signal are calculated. 
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t  = t0 + (x–64)×7200   × tsamp (5) 

720 

dm = dm0 + 
(y–40)×360 

720 

The tsamp in Eq. (5) is the sampling interval, which is typically 4.9152 × 10–5s. 

5. System Testing 

(6) 

The user can identify the FRB signal in a few steps. Click on the “Select Model” drop‐down menu to 

pick the model you need. In the file selection screen triggered by the Select Observation FITS File” 

button, select the observation file or the folder that includes the observation file. If the dispersion 

value of the target is known, please fill in the dispersion value input box (100 pc·cm‐ 3 ‐ 2000 pc·cm‐

3 by default), which can help speed up the process of incoherent dispersion and inference. After 

clicking the “Inference” button, the model inference module will lock the buttons, drop‐down 

menus, and input boxes mentioned above, and start model inference. At this time, the System Status 

Display will update the inference progress of the file in real time. The File List display box will list 

the names of all observed files that have been inferred (each file is recorded only once); The “FRB 

Signal List” will add information about the identified FRB signals. The main interface is shown in 

Figure 8. 

Once the inference is complete, the user can view information about the fast radio burst pulsed 

signal. Users can double‐click on any row in the FRB Signal List to view the labeled dispersion 

time intensity image, as shown in Figure 9. The user can double‐click on any row in the File File List 

to review the details of all FRB signals in the corresponding observation file, as shown in Figure 10. 

All FRB signal information will be stored in the SQLite database, and the information in the “File 

File List” and “FRB Signal List” will still be retained after the model inference module is restarted. 

 

Figure 8. The main page of the model inference module 

 

Figure 9. Viewing the labeled dispersion time intensity image 
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Figure 10. View the details of all FRB signals in the observation file 

6. Conclusion 

In this paper, a radio burst signal recognition system based on deep learning object detection 

algorithm is proposed, which aims to improve the accuracy of fast radio burst signal recognition in the 

original observation data of FAST radio telescope. The system adopts the incoherent 

achromatization algorithm and the YOLO series target recognition algorithm to effectively identify 

the FRB signal and provide a friendly graphical user interface, which is easy to operate. The system 

has the ability to select different algorithm models to adapt to different computer performance. The 

system was verified to exhibit 86% recall and 83% accuracy on FRB20201124A real‐world data 

test set. 

However, it was found that the performance of the algorithmic model needs to be improved, and the 

next step will focus on optimizing the dataset and improving the algorithmic model to improve the 

recall and accuracy. For datasets, richer and more diverse observational data will be collected, and 

data preprocessing techniques will be updated to improve data quality. For the algorithm model, the 

network architecture, parameter settings, and ensemble learning methods will be considered to 

improve the recognition effect. Through continuous efforts, it is believed that with the dual efforts of 

optimizing the dataset and improving the algorithm model, the recognition algorithm will be 

significantly improved, which will provide more reliable support for the research of radio burst 

signals. 
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