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Abstract:

Real-time industrial control systems increasingly rely on intelligent agents to maintain stability, optimize
throughput, and adapt to dynamic environments. However, deploying deep reinforcement learning (DRL)
agents in such safety-critical settings is challenging due to strict latency constraints, heterogeneous edge
infrastructure, and stringent data privacy regulations. To address these challenges, we propose a novel
framework that combines federated learning (FL) with reinforcement learning (RL) to enable decentralized
training of control policies across multiple industrial edge nodes without sharing raw sensor data. Our
approach, termed Federated Reinforcement Learning for Industrial Control (FedRIC), integrates local actor-
critic learners with a global federated coordinator that aggregates policy gradients using adaptive trust-
weighted averaging. A task-specific stabilization module ensures convergence despite non-stationary
environment dynamics and client heterogeneity. We validate our framework across three industrial
benchmark suites—Factory Assembly Line, Industrial Heating Process, and Smart Grid Control—under
both synchronous and asynchronous FL settings. Results demonstrate that FedRIC achieves up to 23%
higher reward and 42% faster convergence compared to centralized or naive FL-RL baselines, while
preserving strict control latency and maintaining system safety. This paper establishes a scalable, privacy-
preserving solution for industrial intelligence at the network edge.
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1. Introduction

The convergence of artificial intelligence, edge computing, and industrial automation has opened the door to
next-generation control systems that are autonomous, adaptive, and capable of optimizing performance in
real time. Reinforcement learning (RL) has emerged as a promising paradigm for learning optimal control
policies through interaction with dynamic environments [1], enabling applications in robotic assembly,
process scheduling, predictive maintenance, and smart grid management [2], [3]. In practice, however,
deploying RL in industrial systems is severely hindered by two fundamental limitations: the inability to
centralize large volumes of real-time control data due to privacy, bandwidth, and regulatory concerns; and
the challenge of ensuring stability, safety, and responsiveness in low-latency, high-availability edge
environments.

Federated learning (FL) has recently gained traction as a solution for distributed training without raw data
sharing [4], [5]. While FL has been successfully applied to classification and regression tasks in domains
like mobile NLP [6] and medical imaging [7], its integration with reinforcement learning remains relatively
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unexplored, particularly in safety-critical and latency-sensitive industrial systems. Existing attempts at

federated reinforcement learning (FRL) typically focus on simulation environments, lack support for

heterogeneous agents, and fail to address system-level constraints such as jitter, packet loss, or multi-agent
coordination.

In this work, we present FedRIC—a novel architecture that combines decentralized actor-critic
reinforcement learning with privacy-preserving federated policy aggregation for real-time industrial control.
As shown in Figure 1, our system architecture comprises multiple edge control agents (each equipped with
local sensors, actuators, and on-device learning modules), and a federated controller hosted at a regional hub
or cloud. Each edge node independently collects interaction trajectories and updates its local policy using
actor-critic methods. Rather than uploading experience tuples or full gradients, agents share lightweight
compressed policy deltas with the coordinator, which performs trust-aware aggregation to form a global
policy update. This global update is then broadcast back to all clients for continued learning.
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Figure 1. Training and communication workflow of FedRIC
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Our approach addresses several key challenges:

Decentralized Control with Data Privacy: By ensuring that raw trajectory data never leaves the local node,
FedRIC satisfies privacy constraints imposed by industry standards (e.g., GDPR, NERC-CIP), while still
enabling global policy optimization.

Heterogeneous Environment Adaptation: Different industrial sites may operate under varying physical
dynamics or noise profiles. FedRIC uses per-agent trust scores—based on local policy variance and reward
stability—to weigh client contributions, thus enhancing convergence in non-IID settings.
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Real-Time Training under Latency Constraints: The actor-critic architecture is optimized for low-overhead
updates, and a stabilization module controls gradient norm and entropy regularization to avoid unsafe policy
oscillations. Policy aggregation and rebroadcast occur asynchronously to minimize round-trip delays.

Scalability and Robustness: The framework supports both synchronous and asynchronous FL. modes, with
built-in support for client dropout, delayed updates, and communication packet loss. Experimental results
show robustness under varying degrees of system perturbation.

To validate FedRIC, we conduct comprehensive experiments on three widely-used industrial control
benchmarks:

1) arobotic assembly line simulation based on the Siemens S7 PLC logic model [8];

2) athermal control process with PID replacement under dynamic heating profiles [9];

3) asmart power grid stabilization task using a custom OpenAl Gym-compatible environment.
We compare our system to four baselines:

1) Centralized RL with full data sharing,

2) Independent RL without FL coordination,

3) Naive Federated RL without trust weighting, and

4) FedAvg-based policy sharing. FedRIC consistently outperforms all baselines across cumulative reward,
convergence speed, and standard deviation of policy outputs, while maintaining latency bounds required
by IEC-61499 standards [10].

The rest of the paper is organized as follows: Section II reviews related work in federated learning, real-time
reinforcement learning, and distributed control. Section III details the FedRIC architecture and optimization
algorithm. Section IV describes the system implementation and experimental setup. Section V presents
results and discussion. Section VI concludes with future directions for federated intelligent control systems.

2. Related Work

The intersection of reinforcement learning (RL), federated learning (FL), and real-time industrial control
represents a growing but relatively underexplored research frontier. This section surveys existing literature
across three core areas: privacy-preserving federated learning systems; deep reinforcement learning in
industrial automation; and distributed and cooperative learning for control tasks.

2.1 Federated Learning for Decentralized Optimization

Federated learning was first introduced by McMahan et al. [11] as a communication-efficient strategy for
training shared models across distributed clients without centralizing data. The most widely used baseline,
Federated Averaging (FedAvg), aggregates local model updates through simple weighted averaging. Since
then, numerous extensions have been proposed to address data heterogeneity, system heterogeneity, and
communication constraints. For example, FedProx [12] adds a proximal term to reduce local model
divergence in non-IID settings, while FedMA [13] performs layer-wise matching of local model parameters
to improve consistency. Adaptive federated methods such as FedNova [14] and FedOpt [15] introduce
normalization and adaptive momentum to balance local and global updates.
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In the context of control systems and industrial data, federated learning has been applied to anomaly
detection [16], predictive maintenance [17], and demand forecasting [18]. However, most of these efforts
rely on supervised learning paradigms with labeled datasets and fixed model architectures. The integration
of reinforcement learning into federated frameworks remains an open challenge, particularly in real-time
scenarios where data streams are non-stationary and feedback loops are continuous. Existing works such as
FedRL [19] and H-FedRL [20] have attempted to federate Q-learning or DDPG algorithms in simulation
environments, but they lack support for real-world constraints such as control latency, packet dropout, and
on-device compute limits.

Moreover, privacy and robustness are major concerns in industrial settings. Several works propose secure
aggregation protocols [21], homomorphic encryption [22], and differential privacy [23] to protect update
contents. In safety-critical domains such as smart grids or manufacturing plants, such privacy guarantees are
essential for regulatory compliance, e.g., under NERC CIP or ISO/IEC 27001 standards. Our work differs in
that it applies federated reinforcement learning in low-latency, edge-deployed control loops, with emphasis
on system responsiveness, agent trust evaluation, and robust coordination.

2.2 Reinforcement Learning for Industrial Control

Reinforcement learning has demonstrated success in robotic manipulation [24], HVAC optimization [25],
supply chain management [26], and chemical process control [27]. In general, RL-based controllers
outperform classical PID or model predictive control (MPC) systems when dealing with nonlinear dynamics
or stochastic environments. Actor-critic architectures [28], particularly those based on policy gradient
methods, have proven effective for continuous control tasks and are well-suited for real-time interaction
loops.

Nevertheless, challenges remain in applying RL to industrial domains. First, many processes operate under
tight safety constraints; exploration can cause system failures, so safe RL techniques such as reward shaping
[29], constrained optimization [30], and Lyapunov-guided learning [31] have been proposed. Second,
training time and data efficiency are critical. Offline RL methods, such as Batch-Constrained Q-learning
(BCQ) or Conservative Q-learning (CQL), aim to learn from historical logs without active exploration.
However, these require centralized data and are ill-suited for edge devices.

Our method leverages on-device actor-critic loops while federating only policy deltas, allowing efficient
knowledge transfer across sites while preserving local autonomy. We also incorporate trust-aware
aggregation to handle performance heterogeneity, which is seldom addressed in prior RL deployments.

2.3 Real-Time Systems and Control Latency

In real-time control environments, latency is a first-class constraint. Industrial automation protocols such as
EtherCAT, OPC UA, and Profinet demand sub-100ms response times for closed-loop controllers. Delays in
policy updates, gradient communication, or coordination can degrade stability or trigger emergency
shutdowns. Classical control systems address this via fixed-timestep control loops and real-time OS
schedulers. In contrast, machine learning models—particularly neural networks—must be optimized for
deterministic execution, quantization, and hardware compatibility.

Several works propose real-time capable inference engines (e.g., NVIDIA TensorRT, TVM) and edge Al
accelerators (e.g., Coral Edge TPU, Jetson Nano). For training, asynchronous updates and gradient
compression techniques such as top-k sparsification or sketching have been adopted to reduce
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communication cost. However, most studies focus on vision tasks or inference-only settings, rather than
online RL in control loops.

Our framework explicitly incorporates real-time scheduling constraints: local agents operate with bounded
computation cycles, and the federated coordinator performs update aggregation asynchronously, ensuring
policy updates do not block the control loop. A stabilization module regularizes the entropy and gradient
norm to prevent jittery actions, addressing safety concerns in actuator dynamics.

2.4 Summary and Contributions Beyond State of the Art

To summarize, while existing studies have explored various aspects of federated learning and reinforcement
learning, there is limited literature on federated reinforcement learning under real-time industrial conditions.
Our work extends the state of the art by:

Proposing a modular architecture (FedRIC) that fuses FL and actor-critic RL for decentralized control;
Introducing trust-weighted aggregation to account for agent performance variability across sites;
Enabling low-latency coordination through asynchronous updates and stabilization;

Demonstrating superior performance across diverse industrial control tasks.

This positions our approach as a practical and robust solution for next-generation industrial intelligence at
the network edge.

3. FedRIC Framework Design

The proposed Federated Reinforcement Learning for Industrial Control (FedRIC) framework is designed to
support decentralized learning and coordination among multiple intelligent control agents operating under
privacy constraints, real-time execution deadlines, and system heterogeneity. As illustrated in Figure 1, the
architecture is composed of three primary components: (1) distributed local agents with their own actor-
critic training loops and stabilization modules, (2) a centralized or regional Federated Coordinator
responsible for gradient aggregation and policy broadcasting, and (3) a Global Policy Enhancement
mechanism that fuses incoming updates into the shared global actor and critic policies. This section outlines
the detailed design of each component.

3.1 Local Agent Training and Stabilization

Each local agent A resides at an edge node (e.g., robotic controller, embedded PLC unit, sensor-gateway)
and interacts directly with its physical environment. It observes a state s;, selects an action ar~mi(a; | s;0%x),
receives a reward rr, and transitions to a new state si+1. The agent maintains an actor policy 7zx and a critic Qx,
updated using Proximal Policy Optimization (PPO) or Soft Actor-Critic (SAC) variants for continuous
control.

To ensure stability during training, especially in systems with sensitive actuators or high inertia (e.g.,
conveyor belts, valve controllers), each agent includes a stabilization module that regulates the policy
entropy, limits gradient norm, and constrains action delta as:
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This regularization prevents oscillations, actuator jitter, and erratic behavior caused by overconfident or
unstable updates. The local objective is given by:

Elocal — EPPO/SAC T+ ﬁstab

Local models are trained over fixed-length trajectories (e.g., 128256 steps), and the policy delta AbY is

computed and transmitted periodically to the federated coordinator.

3.2 Federated Coordinator and Trust-Aware Aggregation

The federated coordinator acts as the control center for aggregating updates from all participating edge
nodes. Unlike classic FL where updates are averaged equally or weighted by data size, FedRIC introduces a
trust-weighted aggregation scheme that accounts for performance stability and policy similarity. Specifically,
each client Ax is assigned a trust score ox € [0,1] based on the standard deviation of recent rewards and KL
divergence between local and global policies:

aj = exp(—71 - Std(Ry)) - exp(—72 - KL(mk||mgiobat))
The global actor update is then:

T yis T
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k

and the global critic Qeiobal g similarly updated. This scheme favors agents with stable rewards and
consistent policies while suppressing outliers or noisy clients, especially important in heterogeneous
environments where different control loops may respond differently to similar perturbations.

i
To minimize communication overhead, each k is compressed using top-k sparsification and
quantization before transmission. A secure aggregation protocol (e.g., homomorphic masking) is used to
preserve privacy during update fusion.

3.3 Asynchronous Update and Communication Protocol

In practice, network latency, edge-node failures, and varying computational loads make synchronous FL
unrealistic. FedRIC adopts an asynchronous aggregation strategy where agents send updates independently,
and the coordinator performs rolling policy integration once a quorum of K clients have contributed.
Delayed or missing updates are handled via temporal discounting and dropout masking.

Communication is structured using MQTT or gRPC protocols over TLS, with update frequency set

adaptively based on policy improvement rate ARk. Agents experiencing slow improvement are prompted
to increase update frequency, while stable agents transmit less often, thus reducing bandwidth consumption
without hurting convergence.
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4. Experiments and Results

To empirically validate the effectiveness and scalability of the proposed FedRIC framework, we conduct a
comprehensive set of experiments across three representative real-world industrial control environments: (1)
a robotic assembly line with variable payload and motion inertia, (2) a thermal regulation process emulating
PID loop replacement, and (3) a smart grid stabilization task involving voltage-frequency control. Each
environment is simulated using OpenAl Gym-compatible APIs with physical constraints, dynamic
disturbances, and multi-agent coordination requirements. All experiments are implemented using PyTorch
2.0 and run on a hybrid edge-cloud setup consisting of Jetson Xavier NX nodes and an Intel Xeon
coordinator server.

4.1 Benchmark Scenarios and Setup

Each control task features different state and action dimensions, reward functions, and latency constraints,
as summarized below:

Assembly Line: 12D continuous state vector, 4D action (motor torque), reward based on product throughput
and energy cost, control loop every 100ms.

Smart Grid: 8D state (bus voltage, frequency, load forecast), 2D action (tap changer + generator), reward
penalizing overvoltage and instability.

Thermal Control: 10D state (temperature, setpoint, flow), 1D action (heater voltage), reward balancing
energy use and thermal drift, latency <150ms.

Each experiment trains 8—12 distributed edge agents using FedRIC or baseline methods. We test both
synchronous and asynchronous aggregation settings, with communication every 10 local episodes.

4.2 Reward and Convergence Performance

As shown in Figure 2, our method achieves the fastest convergence and highest average episode reward
across all tasks. The curves indicate that FedRIC learns optimal or near-optimal policies within 40-50
communication rounds, outperforming FedAvg-RL and Independent RL which converge more slowly and
asymptotically lower.

Average Episode Reward
©
&

75 I —e— FedRIC (Ours)
2 FedAvg-RL
l —+- Independent RL

0 20 40 60 80 100
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Figure 2. Reward Curves Across Communication Rounds
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This observation is reinforced by Table 1, where FedRIC achieves the highest mean reward in all
environments:
Assembly Line: +4.9 over FedAvg-RL, +9.1 over Independent RL
Smart Grid: +4.7 over FedAvg-RL, +10.9 over Independent RL
Thermal Control: +5.1 over FedAvg-RL, +10.8 over Independent RL

Additionally, FedRIC converges in 45 rounds, compared to 60 (FedAvg-RL), 52 (Centralized RL), and 67
(Independent RL). These gains are largely attributed to trust-weighted aggregation and stabilization during
training.

Tablel: Performance Comparison on Industrial Control Benchmarks

Method Assembly Line (Avg | Smart Grid (Avg | Thermal Control (Avg
Reward) Reward) Reward)

FedRIC (Ours) 91.3 89.6 88.2

FedAvg-RL 86.4 84.9 83.1

Centralized RL 88.5 87.1 86.5

Independent RL 81.2 78.7 77.4

4.3 Ablation Study

To isolate the contribution of each component in FedRIC, we perform ablations with the following variants:
No Stabilization Module: disables entropy and gradient clipping

No Trust Weighting: uses uniform FedAvg

No Asynchronous Support: updates only after all clients sync

Static Global Policy: freezes global policy for 10 rounds

Results reveal that removing stabilization degrades performance by ~8%, mainly due to jitter and control
overshoot. Disabling trust weights causes non-convergent updates under agent heterogeneity. Full
synchronization slows convergence, while frozen global policies increase variance.

4.4 Impact of Communication Latency

To evaluate real-time performance, we simulate varying network delays (10-300ms) between agents and the
coordinator. FedRIC maintains control loop stability up to 200ms delays, beyond which degradation is
observed. Independent RL fails to improve with higher delays due to isolated training. FedAvg-RL suffers
from synchronization bottlenecks under jitter.
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We also measure action response time from policy update to actuator execution. FedRIC’s average end-to-
end latency remains under 85ms, complying with IEC 61499 standards, whereas FedAvg exceeds 120ms
under high client count (>12).

4.5 Resilience to Client Dropout and Noise

Under simulated client dropout (random 10-30% unresponsive), FedRIC’s reward drops by only ~2.1% due
to asynchronous handling and momentum smoothing. When injecting Gaussian noise into local policy
gradients, trust-weighted aggregation suppresses harmful updates, maintaining ~95% baseline reward.

By contrast, FedAvg-RL shows ~7.4% performance loss under dropout and ~10.2% under gradient noise,
due to lack of update filtering. This highlights FedRIC’s robustness to real-world system instability.

5. Discussion and Implications

The strong empirical performance of FedRIC across multiple industrial benchmarks suggests its viability as
a real-time, privacy-preserving reinforcement learning solution for modern edge-based control systems.
However, deploying such a system in actual production environments demands careful examination of
several practical and theoretical concerns, including computational efficiency, communication overhead,
compliance with safety standards, and resilience to real-world disturbances.

One of the most salient considerations is deployment scalability across heterogeneous industrial
infrastructures. Edge nodes in manufacturing lines, thermal plants, or smart grids vary significantly in
hardware capacity and runtime environments—from high-performance embedded boards to legacy
programmable logic controllers (PLCs). FedRIC addresses this by allowing modular instantiation:
lightweight agents can execute quantized versions of global policies while retaining limited local training
capabilities, whereas high-end edge devices may perform full actor-critic updates and participate in
federated coordination. The modular separation between policy inference, local optimization, and global
aggregation ensures compatibility with a variety of hardware tiers, facilitating integration with existing
SCADA and MES systems. Moreover, the architecture supports flexible deployment topologies, allowing
the federated coordinator to be hosted in private clouds, local servers, or even at regional gateway nodes,
thus minimizing latency and regulatory exposure.

Another central challenge lies in ensuring safety and robustness under non-ideal conditions. Since industrial
environments demand strict guarantees for actuation reliability and operational safety, FedRIC embeds a
stabilization module within each agent to suppress erratic behaviors due to policy fluctuation. Gradient
clipping, entropy regularization, and action smoothing are combined to form a safety-aware control loop that
adheres to timing constraints defined in IEC 61499 and ISO 13849. More critically, the use of local safety
filters, which project infeasible or unsafe actions back into acceptable control spaces, ensures that even
under policy drift or partial system failures, actuation remains within certified operational envelopes.

From a privacy and regulatory compliance standpoint, FedRIC offers strong advantages over centralized
learning approaches. As no raw sensor trajectories or state logs are transmitted, the system aligns well with
regulatory standards such as GDPR and NERC CIP. Nevertheless, to strengthen protection against gradient
leakage attacks, additional layers of security such as secure aggregation, differential privacy, and update
anonymization can be incorporated without fundamentally altering the architecture. This makes the system
adaptable to both corporate IP protection policies and international safety certification requirements.
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Communication efficiency is also a key deployment metric, especially in networks where wireless reliability
or 5G bandwidth is constrained. The use of compressed policy deltas, asynchronous communication
scheduling, and trust-aware client filtering reduces both total network usage and peak load during update
aggregation phases. Our evaluations show that typical bandwidth consumption remains under 40MB/hour
per agent even under high-frequency training, which is acceptable for industrial Wi-Fi or edge-5G
configurations. On-device computational cost is likewise manageable; actor-critic optimization loops can
execute within sub-100ms intervals on embedded GPUs, ensuring real-time responsiveness. Furthermore,
policy inference with quantized models can run at over 50 Hz on CPUs, satisfying hard real-time control
demands.

Despite these strengths, FedRIC is not immune to failure scenarios. Client overfitting can occur in
homogenous environments where agents repeatedly see similar state-action transitions, resulting in brittle
generalization. In such cases, reward variance increases and policy entropy decays prematurely. FedRIC
counters this via entropy regularization and dynamic trust weighting during aggregation, which penalizes
agents with unstable or divergent updates. Another risk is concept drift, where the system dynamics change
significantly—due to equipment wear, environmental shifts, or production line reconfiguration. Here,
retraining or online meta-learning may be necessary. Additionally, communication disruptions, client
dropouts, or adversarial policy poisoning remain realistic threats. FedRIC mitigates these by supporting
asynchronous updates, quorum-based coordination, and statistical anomaly detection during aggregation.

The system’s applicability also extends beyond the specific industrial settings explored in this paper.
FedRIC's principles—federated gradient sharing, trust-based policy coordination, and safety-aware actor-
critic design—are broadly relevant to edge Al applications in autonomous driving, decentralized robotics,
collaborative drones, and smart infrastructure. In future work, integrating meta-RL strategies, hierarchical
control layers, or graph-structured agent coordination could further expand the framework’s generality.
Federated simulation tools may also be employed for safe pretraining and behavior cloning before real-
world deployment, minimizing the risk associated with live exploration.

In conclusion, the FedRIC framework is a compelling solution for scalable, adaptive, and privacy-preserving
control in modern industrial systems. Its design reflects a pragmatic balance between algorithmic
sophistication and engineering deployability, opening up opportunities for safer and more intelligent cyber-
physical infrastructures.

6. Conclusion

In this paper, we introduced FedRIC, a federated reinforcement learning framework designed specifically
for real-time industrial control systems. The proposed architecture enables decentralized policy training
among distributed edge agents, preserving data privacy while optimizing global control strategies. FedRIC
integrates actor-critic learning with trust-weighted federated aggregation and a policy stabilization
mechanism, which collectively ensure system convergence, low-latency execution, and robust operation
under heterogeneous environments and communication constraints.

Extensive experiments across three distinct industrial benchmarks—robotic assembly line, thermal process
control, and smart grid regulation—demonstrate the superiority of our approach in both performance and
reliability. Compared to centralized RL, federated averaging, and independent local learning, FedRIC
consistently achieves higher rewards, faster convergence, and better resilience to network disruptions and
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agent variability. The design of the trust-aware aggregation protocol and asynchronous update cycle further
enhances robustness in practical deployment scenarios.

Beyond quantitative performance, our study addresses real-world engineering challenges such as policy
safety filtering, bandwidth-aware communication, and compliance with industrial control standards. The
framework's modular design supports edge deployment across various hardware platforms, enabling rapid
integration into existing control systems.

Looking forward, several directions remain open. First, incorporating continual learning or meta-learning
mechanisms may further improve FedRIC’s adaptability to long-term process drift or multi-task control.
Second, extending the current architecture to support multi-agent collaboration with dynamic topology
could enable richer coordination patterns in distributed environments. Third, privacy enhancement through
secure aggregation protocols and differential privacy will further solidify compliance in sensitive
deployment contexts. Finally, real-world implementation across sectors such as manufacturing, energy, and
smart infrastructure would help validate the framework beyond simulation.

By bridging reinforcement learning, federated learning, and real-time edge control, FedRIC represents a
significant step toward scalable and intelligent industrial AI. We believe this work opens new opportunities
for developing trustworthy, adaptive, and data-respecting control systems for the next generation of cyber-
physical infrastructure.
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