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Abstract:
This paper addresses the challenges of feature redundancy and complex high-dimensional dependencies in
multivariate time series forecasting. A forecasting method is proposed by combining TSFresh-based feature
engineering with the Temporal Fusion Transformer. The method first applies TSFresh to perform
automated feature extraction and selection on raw time series data. This process reduces input
dimensionality and enhances feature representation. Then, the Temporal Fusion Transformer is used to
model temporal dependencies and inter-variable relationships. It integrates dynamic variable selection,
gated residual networks, and multi-head attention to achieve accurate future sequence prediction.
Experimental results on the Electricity multivariate load dataset show that the proposed model outperforms
existing mainstream methods in terms of MAE, MSE, and R ² . It also shows stable performance in
hyperparameter sensitivity analysis and robustness testing. These results confirm the effectiveness and
reliability of the method in complex multivariate time series forecasting scenarios.
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1. Introduction
With the rapid development of information technology, the volume of data generated during system
operations has grown significantly. Multidimensional time-related sequence data are especially prevalent in
domains such as finance, meteorology, energy, healthcare, and industrial control [1]. These data often
exhibit high dynamism, nonlinearity, and complex variable interactions. Such characteristics pose serious
challenges for modeling and prediction. Extracting key features from massive, multi-source, and
heterogeneous data and building predictive models with strong generalization capabilities has become a
crucial topic in time series modeling research [2].
Multivariate time series forecasting requires not only capturing temporal patterns but also understanding the
coupling and dynamic dependencies among variables. Traditional statistical models often struggle with
high-dimensional data and complex variable interactions. In contrast, deep learning models show strong
capabilities in modeling nonlinear relationships, capturing long-term dependencies, and enabling end-to-end
prediction. However, the black-box nature of deep models and their strong dependence on input features
make their performance highly sensitive to the quality of feature construction. Therefore, discovering latent
features from time series data is key to improving model performance.
TSFresh is an automated tool for time series feature extraction. It computes a wide range of statistical,
frequency-domain, and structural features from raw sequences and applies statistical tests for feature
selection. This process greatly improves both modeling efficiency and feature representation. TSFresh
reduces the reliance on manual feature engineering and enhances feature completeness and discriminative
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power from multiple perspectives. These improvements provide a solid data foundation for model training
and contribute to better predictive accuracy and generalization [3].
On the other hand, the Temporal Fusion Transformer is a novel deep learning architecture designed to
address challenges in modeling long-term dependencies and unstable variable relationships in multivariate
time series. It integrates self-attention mechanisms, gated recurrent structures, and variable selection
modules. The model can capture complex dependencies and multi-scale features. It also includes
interpretable components that help analyze the influence of input features. Compared to traditional models,
it handles irregular data more flexibly, imputes missing values, and supports multi-step forecasting [4, 5]. As
a result, it achieves higher accuracy and robustness across various real-world applications.
In summary, combining TSFresh for feature extraction with the modeling power of the Temporal Fusion
Transformer can enhance both the accuracy and efficiency of multivariate time series forecasting. This
integrated approach also enables the development of predictive frameworks that are interpretable and robust.
Such research not only holds theoretical significance for algorithm development but also offers strong
practical value. It supports the deployment and optimization of time series modeling in complex real-world
scenarios.

2. Related work
2.1 TSFresh Feature Engineering
Feature engineering plays a critical role in time series modeling tasks. Traditional feature extraction methods
often rely on manual design. These methods are subjective and uncertain. They struggle to maintain stable
performance in large-scale and high-dimensional data scenarios. To improve the systematization and
automation of feature extraction, automated tools for time series feature generation have become a research
focus. By transforming raw sequence data and applying statistical mining, these tools can automatically
generate representative feature sets. This approach helps address the limitations in expressing multivariate
features[6].
TSFresh is a high-dimensional feature extraction framework for time series data. It computes hundreds of
statistical, frequency-domain, Fourier, and shift-related features. This allows for a comprehensive
representation of data patterns. The method is highly automated and supports various modeling
algorithms[7,8]. For feature selection, TSFresh uses a filter-based statistical testing mechanism. It evaluates
the significance of correlations between features and target variables. This process reduces redundant
dimensions and improves training efficiency and generalization. Compared to manual construction or simple
sliding window methods, TSFresh greatly enhances the quality of features and the representativeness of
model inputs [9].
Applying TSFresh in multivariate time series modeling strengthens the structural information of input data.
It also captures hidden interaction patterns between variables through large-scale feature combinations. This
approach is well-suited for complex systems with nonlinearity, nonstationarity, and variable coupling. It
provides clean and rich feature inputs for deep prediction models. As a result, TSFresh establishes a solid
foundation for end-to-end forecasting systems. It is a key component for achieving high-accuracy time series
prediction.

2.1 TSFresh Feature Engineering
The Transformer architecture was originally proposed for sequence modeling tasks. Its design is fully based
on the self-attention mechanism[10]. This allows the model to process entire sequences in parallel and
capture long-range dependencies. Unlike traditional recurrent mechanisms, it avoids the gradient vanishing
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problem in long sequence training. It also improves training efficiency and enhances model representation
capacity [11]. In time series modeling, the Transformer has been widely adopted and refined due to its
potential in capturing temporal dependencies and complex inter-variable relationships.
Unlike traditional recurrent neural networks, the Transformer can flexibly handle interactions across
different time steps. It uses positional encoding to retain the temporal context. For multivariate time series
data, this structure is particularly suitable for modeling dynamic dependencies and nonlinear interactions
among variables. The self-attention mechanism assigns different attention weights. This enhances learning
for key time steps or critical variables. As a result, the model gains interpretability and selectivity. It shows
stronger generalization and robustness in complex tasks [12, 13].
In recent years, many improvements to the Transformer architecture have emerged to better suit time series
characteristics. These include local attention, causal convolution, and temporal gating mechanisms. Such
modifications enhance the model's ability to represent temporal structures [15]. They retain the advantages
of the original Transformer in handling high-dimensional sequences. At the same time, they improve
performance in long-horizon forecasting, multi-step prediction, and multivariate modeling. The continued
evolution of Transformer-based models has become a key direction in deep time series modeling.

3. Method
This paper proposes a multivariate time series forecasting method that integrates feature engineering with
deep sequence modeling. The overall framework consists of two key components. First, the TSFresh-based
feature engineering module systematically processes the raw multivariate time series. It extracts rich
statistical and structural features and applies a significance-based selection mechanism. This produces a
high-quality and low-redundancy feature set. Next, the selected features are fed into the Temporal Fusion
Transformer model. This model combines interpretable attention mechanisms, dynamic variable selection
networks, and gated recurrent structures. It effectively captures complex dependencies across both
temporal and variable dimensions. The model enables accurate prediction of future time steps. The
architecture is illustrated in Figure 1.

Figure 1. Overall model architecture diagram
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3.1 Feature Selection Module
In multivariate time series forecasting, the original input often contains a large number of dimensions and
redundant features. Direct input to the deep model will not only increase the computational complexity, but
may also cause overfitting and decreased generalization ability. Therefore, compressing and screening the
feature space before model training has important theoretical and practical significance. In order to achieve
efficient feature selection, this paper adopts a method based on statistical tests and correlation evaluation to
perform multi-level processing on the original feature set extracted by TSFresh, eliminate redundant
features, and retain subsets that are significantly correlated with the target variable, thereby optimizing the
input quality of the downstream model. The model architecture is shown in Figure 2.

Figure 2. Feature Selection Module Architecture

First, assume that the original multivariate time series data is input as:
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and n represents the number of variables. After feature extraction through TSFresh, the feature matrix is
obtained:

},...,,{ 21 mfffF 

Where jf is the jth statistical or frequency domain feature calculated from the original sequence, with a
total of m features. Next, the correlation between each feature and the target variable y is evaluated, and its
significance is determined using the hypothesis testing method.

For each feature jf , we set up a null hypothesis 0H : this feature has no significant statistical relationship
with the target variable y, and use the p-value as the basis for judgment. If the p-value is less than the set
threshold  , then 0H is rejected and the feature is retained. That is:

'),( Ffyfp jj 
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'F is the set of effective features after screening. Furthermore, in order to reduce the redundancy between
features, the mutual information or Pearson correlation coefficient is used to calculate the linear/nonlinear
correlation between features, and the redundancy threshold  is set. If the correlation between two
features exceeds  , the one with higher redundancy is removed.

Finally, the feature selection module outputs a low-dimensional, non-redundant, and highly relevant feature
subset 'F , which serves as the input of the Temporal Fusion Transformer. This module effectively
compresses the input dimension while retaining the amount of information, and enhances the stability and
predictive ability of the model when facing high-dimensional time series data. Through this pre-processing
of data mining, the overall model can achieve end-to-end learning in structure, achieving a better balance
between expressiveness and generalization ability.

3.2 Temporal Fusion Transformer Architecture

After completing feature engineering, this paper uses Temporal Fusion Transformer (TFT) as the core
prediction model to model and predict the selected multivariate time series features. TFT can
simultaneously process static features, historical observations, and future known variables. Combined with
multi-level attention mechanisms and gating structures, it has significant advantages in capturing the
interaction relationship and time dependency between variables. In order to effectively model the complex
dynamic behavior in the input sequence, TFT integrates key components such as learnable position
encoding, variable selection network, gated residual connection, and multi-head attention mechanism in
structure. Its module architecture is shown in Figure 3.

Figure 3. Temporal Fusion Transformer module architecture

Assume that the input after feature selection is the feature matrix dTRF ' , where T represents the time
step and d represents the number of effective feature dimensions selected. First, a learnable variable
selection network vsn is used to soft-select different feature dimensions to highlight the most important
variables at the current moment:

)'(')'( bWFFFF vsnt  



Journal of computer science and software applications

https://www.mfacademia.org/index.php/jcssa

ISSN:2377-0430

Vol. 5, No. 5, 2025

)( is the sigmoid activation function, W and b are learnable parameters, and  represents element-by-
element multiplication. This structure dynamically controls the weight of the feature dimension input at
each time step, allowing the model to focus on key variables.

Subsequently, the features processed by variable selection are fed into the gated residual network grn to
model nonlinear time dependency while maintaining information stability and gradient propagation
capability:

tttgrnt FbUFRELUVGLUFh  )')(()(

',, bVU is a trainable parameter, GLU represents a gated linear unit, ReLU is an activation function, and
the residual connection structure enhances the network's ability to capture deep information. In the time
dimension, the representations of multiple time steps will be fed into the multi-head self-attention module
to model the global time-dependent pattern and generate a fused context feature representation tC .

Finally, after obtaining the predicted output ty , the model minimizes the error between the predicted value
and the true value through the supervised learning objective, and the loss function used is the weighted
mean square error (Weighted MSE):





T

t
ttt yyw

T
L

1

2)'(1

Where tw is the loss weight factor of each time step, which is used to control the contribution of different
time points to the overall loss. This loss function not only considers the global minimization of the
prediction error, but also optimizes the accuracy of the key time period through the time weighting
mechanism, so that the model can still maintain robust performance under multi-step prediction and
unbalanced sample distribution.

4. Experimental Results

4.1 Dataset
This study uses the Electricity Load Diagrams 20112014 (Electricity) dataset as the benchmark for
multivariate time series forecasting. The dataset contains electricity load data from 370 clients in a specific
region, collected between 2011 and 2014. The data are recorded every 15 minutes. It includes households,
industrial users, and commercial entities. The series shows clear periodicity, trends, and fluctuations. This
makes the dataset suitable for tasks such as load forecasting and energy consumption modeling.

In the experimental setup, a subset of user load data is selected as input variables. The load data of a
designated target user are used as the prediction target. This forms a multi-input single-output forecasting
task. To improve modeling efficiency and reproducibility, the data are standardized. Then, based on a fixed
sliding window strategy, the data are split into training, validation, and test sets. Each sample consists of a
historical observation sequence and the corresponding future prediction target.

The dataset has several advantages. It is continuous, well-structured, and strongly periodic. There are also
correlations among different variables. These properties provide a solid foundation for evaluating the
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proposed model in multivariate modeling and long-term forecasting tasks. Moreover, the high-frequency
sampling and long duration allow for comprehensive assessment of model stability and robustness under
varying time scales, forecast horizons, and input dimensions.

4.2 Experimental Results

In this section, this paper first gives the comparative experimental results of the proposed algorithm and
other algorithms, as shown in Table 1.

Table 1: Comparative experimental results

Method MAE MSE R2

Ours 0.184 0.256 0.861

Informer[15] 0.211 0.283 0.844

Autoformer[16] 0.198 0.270 0.850

LSTM + Attention[17] 0.237 0.305 0.832

Temporal Convolutional Network (TCN)[18] 0.249 0.319 0.818

As shown in Table 1, the proposed method achieves the best overall performance in the multivariate time
series forecasting task. Specifically, it outperforms other advanced models on major evaluation metrics such
as MAE, MSE, and R². This demonstrates strong modeling capability and high prediction accuracy. The
MAE is 0.184, and the MSE is 0.256. These results indicate that the model maintains stable error control
and effectively reduces both point-wise and overall bias.
In comparison, although Informer and Autoformer also belong to the Transformer family and are capable of
modeling long sequences, their performance on error metrics is slightly inferior. Informer achieves an MAE
of 0.211, an MSE of 0.283, and an R² of 0.844. Autoformer performs slightly better than Informer in error
control but still falls short of the proposed method. This suggests some limitations in feature selection or
variable modeling in these models.
The LSTM + Attention model, a classical deep sequence architecture, records an MAE of 0.237, an MSE of
0.305, and an R² of 0.832 in this experiment. Its overall performance is clearly weaker than that of
Transformer-based models. This result shows that traditional recurrent structures have difficulty capturing
long-term dependencies in high-dimensional and complex interactive data. Problems such as information
loss and gradient decay are more likely to occur.
The TCN model shows the weakest predictive performance. Its R² is only 0.818, indicating a limitation in
global sequence modeling. Among all models, it has the highest error values. This suggests that its
representational capacity is limited when handling highly nonlinear and strongly coupled multivariate time
series. In summary, the proposed method combines feature engineering with the self-attention mechanism. It
can more effectively capture key variable information and temporal dependencies, leading to better
forecasting results.
Furthermore, this paper presents a hyperparameter sensitivity experiment. First, the experimental results of
the learning rate are given, as shown in Table 2.
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Table 2: Hyperparameter sensitivity experiments (Lr)

Lr MAE MSE R2

0.005 0.211 0.289 0.842
0.004 0.201 0.274 0.849
0.003 0.192 0.262 0.855
0.002 0.188 0.258 0.858
0.001 0.184 0.256 0.861

As shown in Table 2, the learning rate (Lr) has a significant impact on model performance. As the learning
rate gradually decreases, the model shows continuous improvement across all evaluation metrics.
Specifically, both MAE and MSE values decrease as the learning rate becomes smaller, indicating better
control of prediction errors. At the same time, the R² metric shows an upward trend, suggesting enhanced
ability to explain data variance and improved overall fitting performance.
When the learning rate is relatively high, for example Lr = 0.005, the model records an MAE of 0.211, an
MSE of 0.289, and an R² of 0.842. The predictive performance at this stage is relatively poor. This is mainly
because a high learning rate often causes oscillations during training, making it difficult for the model to
converge to an optimal solution. As the learning rate decreases to 0.001, the MAE drops to 0.184, the MSE
falls to 0.256, and the R² rises to 0.861. The model becomes more stable and better captures complex
patterns and dynamic relationships in the time series.
Overall, reasonably reducing the learning rate can effectively enhance model performance. However, an
excessively low learning rate may lead to prolonged training time or getting stuck in local optima. Based on
the experimental results, Lr = 0.001 achieves the best balance. It maintains low errors while ensuring good
convergence speed and predictive capability. Therefore, Lr = 0.001 will be used as the default learning rate
for further validation and testing in subsequent experiments.
Next, the optimizer analysis of the hyperparameter sensitivity experimental results is given, and the
experimental results are shown in Table 3.

Table 3: Hyperparameter sensitivity experiments(Optimizer)

Optimizer MAE MSE R2

SGD 0.236 0.302 0.834
AdaGrad 0.221 0.284 0.843
Adam 0.196 0.264 0.854
AdamW 0.184 0.256 0.861

As shown in Table 2, different optimizers have a significant impact on the training performance of the
model. The overall trend indicates that as optimizer performance improves, the model shows better results in
terms of MAE, MSE, and R². The traditional SGD optimizer performs relatively poorly in this task, with an
MAE of 0.236, MSE of 0.302, and R² of only 0.834. This suggests that SGD converges slowly and is prone
to getting stuck in local minima when dealing with complex multivariate time series data.
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In comparison, AdaGrad improves model performance to some extent, particularly in reducing MSE.
However, due to its gradient accumulation effect, the learning rate becomes too small in later stages,
resulting in suboptimal final fitting. The Adam optimizer introduces an adaptive learning rate mechanism. It
significantly reduces error metrics, with the MAE dropping to 0.196, the MSE to 0.264, and the R²
increasing to 0.854. The training process becomes more stable and efficient.
Overall, the model achieves the best predictive performance when using the AdamW optimizer. Compared
with other optimizers, AdamW introduces an improved weight decay strategy that effectively reduces
overfitting. It helps the model maintain low error while further enhancing generalization. Under AdamW,
the model reaches an MAE of 0.184, an MSE of 0.256, and an R² of 0.861. This indicates that AdamW is
better suited for complex time series forecasting tasks. Therefore, AdamW is used as the default optimizer in
subsequent experiments.
Furthermore, this paper also gives the analysis results of the impact of the number of input variables on the
model stability, as shown in Figure 4.

Figure 4. Results of analysis on the impact of the number of input variables on model stability
As shown in Figure 4, the model's performance on the three main evaluation metrics changes with the
number of input variables. When the input dimension is small (e.g., 10 features), the model shows higher
errors. Both MAE and MSE are relatively large. This indicates that limited information restricts the model's
ability to learn complex temporal dependencies. As the number of features increases from 10 to 50, the
MAE and MSE gradually decrease, and the R² value rises. This suggests that a moderate number of input
variables helps the model better capture system structure.
When the number of features reaches 50, the model achieves its best performance. The MAE is as low as
0.184, the MSE is 0.256, and the R² reaches 0.861. This result indicates that, at this level, the model can
fully learn variable interactions and capture dynamic changes in the sequence. Accurate prediction is
achieved. These findings also confirm the importance of feature selection strategies. Proper selection and
organization of input features can improve both model stability and generalization.
However, when the input dimension continues to increase to 70 or even 100, the model performance
becomes slightly unstable. Error metrics rise slightly, and R² decreases. This may be caused by redundant
features that increase model complexity. Such redundancy can lead to overfitting or difficulties in gradient
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propagation. Therefore, the choice of input variables should balance between providing enough information
and avoiding excessive redundancy. This balance is key to achieving optimal stability and accuracy.
Finally, this paper also gives a robustness test experiment under noisy data, and the experimental results are
shown in Figure 5.

Figure 5. Robustness test experiment under noisy data
As shown in Figure 5, the model's performance gradually decreases as the noise level increases. This
indicates that noise interference affects model stability. Specifically, both MAE and MSE increase with the
rise of noise standard deviation. The MAE grows from 0.184 (no noise) to 0.235 under the highest noise
level. The MSE rises from 0.256 to 0.316. These results suggest that prediction errors become larger as
noise intensifies.
At the same time, the R² value drops steadily from 0.861 to 0.811. This shows that the model's ability to
explain data variance weakens under noise. The downward trend also confirms the model's sensitivity to
data perturbations. In long-term forecasting or tasks involving strong high-dimensional variable interactions,
external noise may further propagate prediction errors.
Although performance decreases, the overall change remains stable. The model still maintains strong
generalization and robustness. Even when the noise standard deviation reaches 0.04, the R² stays above 0.8.
Both MAE and MSE remain within a reasonable range. This demonstrates that the model has a certain level
of noise resistance and can retain stable prediction performance in noisy environments.

5. Conclusion
This study proposes a deep learning model for multivariate time series forecasting by integrating TSFresh-
based feature engineering with the Temporal Fusion Transformer. The method automatically extracts
statistical and structural features from high-dimensional time series data. It combines dynamic variable
selection with multi-layer attention mechanisms. This enhances the model's capability to learn in complex
data environments and improves prediction accuracy. Experimental results show that the proposed method
outperforms mainstream models on several key metrics. It demonstrates strong generalization and
robustness, especially under high input dimensionality or noise interference. Comparative experiments and
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hyperparameter sensitivity analyses validate the importance of feature selection and structural optimization.
Factors such as learning rate, optimizer, and the number of input features significantly influence model
performance. These findings highlight the necessity of constructing high-quality input features and applying
well-designed training strategies. Moreover, robustness tests under noisy data conditions show that the
model can effectively handle uncertainty and data disturbances in practical applications. This confirms its
practical value and potential for engineering deployment.
The proposed approach is not only innovative in model design but also offers a new reference for time series
forecasting in real-world tasks such as electricity load forecasting, traffic flow prediction, and financial trend
modeling. In particular, when dealing with multi-source heterogeneous data and high-dimensional dynamic
variables, the framework supports effective feature compression, information filtering, and efficient
prediction. It provides a scalable and interpretable solution for sequence modeling in complex systems.
Future research can further explore the model's potential in multi-task forecasting, multimodal data fusion,
and graph-based sequence modeling. In the realm of industrial applications, work can also concentrate on
automated feature engineering, model compression, and real-time forecasting to address the demands of
higher frequency, larger scale, and greater timeliness. These directions can facilitate the deployment of time
series analysis in intelligent decision-making and data-driven systems.
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