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Abstract:
In the era of multi-domain artificial intelligence, effective fusion of visual and textual modalities has
become essential in numerous applications ranging from autonomous navigation to medical diagnosis and
human-computer interaction. However, current models often struggle to generalize across distinct domains
or lack the capability to capture high-order semantic dependencies in heterogeneous input data. In this paper,
we propose a novel framework that integrates hypergraph-based structural modeling with transformer-based
semantic alignment to construct a unified cross-modal representation paradigm. Specifically, our method
constructs a dynamic hypergraph to encode high-order correlations among image regions and textual tokens,
which is subsequently fused within a dual-stream transformer encoder. The model is trained under a
contrastive alignment objective across multiple domains, including natural scenes, satellite imagery, and
clinical imaging, ensuring transferability and robustness. Extensive experiments on four benchmark
datasets-Flickr30K, MS-COCO, RSICD, and IU X-Ray—demonstrate that our approach outperforms
previous state-of-the-art methods in both zero-shot retrieval and domain adaptation tasks.
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1. Introduction
The unprecedented growth of multimodal data—comprising images, text, audio, and structured
information—has motivated the development of models capable of understanding and reasoning across
different information sources. Among these, the fusion of visual and linguistic representations plays a
particularly crucial role in tasks such as image captioning, visual question answering, cross-modal retrieval,
and embodied AI systems. The key challenge lies in learning a shared embedding space that can faithfully
capture semantic alignment between image regions and text tokens while maintaining robustness across
diverse domains. Conventional methods typically adopt CNN-RNN pipelines or transformer-based dual
encoders trained under contrastive objectives [1], [2]. Despite their success on standard datasets like MS-
COCO and Flickr30K, these models often exhibit significant performance degradation when deployed on
out-of-distribution (OOD) domains, such as satellite images or clinical scans, where visual patterns and
textual annotations differ in scale, texture, or semantics.

Recent efforts in hypergraph neural networks (HGNNs) have shown promise in modeling higher-order
relations in structured data [3], [4]. Unlike traditional pairwise graphs, hypergraphs allow the encoding of
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multi-element associations, which is particularly beneficial for representing image patches with shared
semantic features or text segments with latent co-reference. In parallel, transformer architectures, originally
proposed in [5], have become the de facto standard for natural language processing and have seen widespread
adoption in vision tasks through Vision Transformers (ViTs) and cross-modal transformers such as
ViLBERT [6] and UNITER [7]. However, most existing fusion models still treat visual and textual features
as flattened token sequences, ignoring the underlying structural dependencies that exist in both modalities.
For example, a single textual token like “group” may refer to multiple spatially separated image regions,
which standard attention mechanisms fail to capture unless explicitly modeled.

To address these limitations, we propose a unified Hypergraph-Transformer framework for vision-language
representation learning. The core idea is to bridge the semantic alignment capabilities of transformers with
the structural expressiveness of hypergraphs. Specifically, given an image-text pair, we first extract low-level
features using pretrained backbones (e.g., ViT and BERT), followed by constructing a set of visual and
textual hyperedges based on learned affinity matrices. These hypergraphs capture semantic clusters—such as
object co-occurrences or thematic keyword groups—and are fed into a dual-stream transformer, where each
stream is initialized with hypergraph-enhanced embeddings. A shared cross-modal attention block further
refines the alignment between modalities under a contrastive learning framework that enforces consistency
across multiple domains.

Figure 1. Overall architecture of the proposed cross-modal alignment framework.
As illustrated in Figure 1, our architecture consists of four major components: multimodal encoders for visual
and textual input; dynamic hypergraph constructors for each modality; a dual-stream transformer with
structural-attention fusion; and a contrastive alignment head that enforces cross-domain consistency. We
conduct extensive experiments on benchmark datasets that span four distinct domains: natural images
(Flickr30K), common objects (MS-COCO), remote sensing imagery (RSICD), and radiology reports (IU X-
Ray). Our method achieves significant improvements in Recall@1 and mAP scores compared to existing
baselines, especially in zero-shot and few-shot transfer settings. In addition, ablation studies confirm the
benefit of hypergraph modeling over standard attention-only fusion, and visualizations reveal interpretable
cross-modal alignments.
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a. In summary, our contributions are three-fold:

b. We design a general-purpose hypergraph transformer architecture that can be applied to multiple
domains and modalities.

c. We propose a novel contrastive training strategy that aligns modality-specific hypergraph representations
across domain boundaries.

We demonstrate strong generalization on OOD tasks, showcasing the potential of structured cross-modal
learning for real-world applications.

2. Related Work
The task of learning robust and generalizable representations across vision and language modalities has long
been a central focus in multimodal machine learning. Traditional early fusion methods concatenate image
features with text embeddings and apply shallow classifiers, but these approaches often fail to capture deep
semantic interactions and contextual dependencies. More recent work has shifted toward learning shared
embedding spaces through contrastive objectives, transformer encoders, and graph-based structures. In this
section, we review related research in three main directions: cross-modal embedding learning, transformer-
based vision-language models, and hypergraph neural networks for structural representation.

Early cross-modal models employed dual-branch architectures where Convolutional Neural Networks (CNNs)
were used to encode images, while Recurrent Neural Networks (RNNs) or bag-of-words embeddings were
used for text. Representative methods include DeViSE [1] and VSE++ [2], which use triplet ranking loss to
bring matched image-text pairs closer in embedding space. These approaches showed early promise on
datasets like Flickr30K and MS-COCO but suffered from limited generalization to unseen concepts or
domains due to rigid alignment structures and shallow architectures.

The introduction of transformer architectures revolutionized both language and vision modeling. BERT [3]
and GPT [4] series demonstrated the power of self-attention in capturing contextual semantics in text.
Inspired by this, models such as ViLBERT [5], LXMERT [6], and UNITER [7] applied similar transformer-
based dual encoders to image-text pairs. These models typically employ object detectors (e.g., Faster R-CNN)
to extract region-level visual features and concatenate them with token embeddings before applying multi-
layer transformer fusion. The resulting architectures can capture fine-grained alignments and achieve state-of-
the-art performance on tasks such as visual question answering (VQA), image captioning, and image-text
retrieval.

Despite their success, these models often require substantial pretraining on massive aligned datasets and
struggle when domain distributions shift. For example, models pretrained on MS-COCO perform poorly
when applied to satellite or medical imagery, where object categories and spatial statistics differ significantly.
Moreover, standard attention mechanisms operate over flattened token sequences, lacking the inductive bias
to model higher-order relationships such as scene layout, object co-occurrence, or thematic structure in text.

To address these issues, recent works have explored graph-based approaches to encode structural information
in multimodal data. Scene graphs [8] and co-attention graphs [9] represent visual elements as nodes with
pairwise relations, enabling localized reasoning. However, these methods are inherently limited to binary
interactions and do not generalize well to global or semantic groupings. Hypergraph neural networks
(HGNNs), introduced in [10], extend this idea by allowing each hyperedge to connect an arbitrary number of
nodes, thereby enabling the modeling of high-order relationships. In the context of computer vision, HGNNs
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have been used for image classification [11], semantic segmentation [12], and few-shot learning [13],
demonstrating their superior capacity to capture global dependencies and structured semantics.

In multimodal settings, hypergraphs have been explored less extensively. One recent attempt, CAHG [14],
proposed a contrastive alignment framework based on hypergraph co-embedding of vision-language pairs,
showing improved performance in noisy data settings. However, these models typically treat hypergraph
encoding and transformer fusion as disjoint stages, failing to fully exploit their mutual complementarities.
Our approach differs by integrating hypergraph construction into the tokenization and attention pipeline,
using hypergraph-informed token embeddings as input to a dual-stream transformer, allowing structural
signals to flow through the attention layers.

In terms of domain generalization, prior work often relies on fine-tuning pretrained models on new datasets
or applying domain adversarial training [15]. However, these techniques require labeled data in the target
domain, which is not always available. Contrastive learning under domain-agnostic settings has been
proposed as an alternative [16], where positive pairs are constructed using semantic similarity across datasets.
Still, these methods rely on strong supervision or handcrafted similarity metrics. Our proposed framework
sidesteps this by constructing hypergraphs dynamically per input, enabling structure-aware learning that is
less sensitive to domain shifts.

Other relevant work includes multimodal graph fusion [17], which combines visual and textual graphs via
cross-modal message passing, and dynamic attention routing [18], which adaptively weights token
interactions based on context. These techniques are complementary to our work and could potentially be
incorporated into future extensions. However, they often require additional parameters and training
complexity, whereas our design keeps the model modular and efficient.

Finally, in terms of practical system integration, recent models such as CLIP [19] and ALIGN [20] have
shown that large-scale pretraining on noisy image-text pairs can yield robust zero-shot generalization. While
these models offer impressive performance, their training requires billions of data points and extensive
compute resources. Our work provides an orthogonal direction by focusing on architectural inductive bias—
i.e., leveraging structure rather than scale—to improve generalization, especially under constrained or cross-
domain settings.

To summarize, while transformer architectures have advanced the state of vision-language learning, and
hypergraph networks have proven effective in capturing high-order relations, there remains a gap in
integrating these paradigms into a unified model. Our framework addresses this by embedding hypergraph
semantics directly into the attention mechanism, yielding a system that is both semantically expressive and
structurally aware, while being lightweight and transferable across domains.

3. Proposed Framework
To effectively capture semantic alignment between image and text across diverse domains while
incorporating high-order structural information, we propose a unified framework that integrates hypergraph
neural modeling with transformer-based cross-modal fusion. The architecture, illustrated in Figure 2,
consists of three main components: (1) multimodal encoders for initial feature extraction, (2) hypergraph
constructors for structure-aware embedding generation, and (3) a dual-stream transformer for modality
fusion and contrastive alignment. This section presents the detailed design and rationale behind each
component, followed by the overall training strategy and objective formulation.
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Figure 2. Unified framework: Integrated hypergraph-neural modeling with transformer-based cross-modal
fusion

3.1 Multimodal Feature Encoders
The input to the system is an image-text pair (I,T). The image I is first processed through a pretrained visual
backbone—either a Vision Transformer (ViT) or a lightweight ResNet encoder—to extract spatially
distributed feature tokens V={v1,...,vN}∈RN×d, where N denotes the number of image patches and ddd the
embedding dimension. The text T is tokenized using a standard BERT tokenizer, and the resulting sequence
is passed through a frozen BERT encoder to obtain contextual word representations T={t1,...,tM}∈RM×d. In
our implementation, we set d=768d = 768d=768 and use N=49N = 49N=49 (7×7 patches) and M≤30M,
padded as necessary.

While the transformer backbone provides strong semantic embeddings, it lacks explicit structure-awareness.
To address this, we propose a hypergraph-based enhancement step before modality fusion.

3.2 Hypergraph Construction and Embedding Enhancement
Given a set of visual tokens V, we construct a hypergraph Hv=(V,Ev), where nodes correspond to image
patches and hyperedges represent semantic or spatial groupings. A similar hypergraph Ht=(T,Et) is
constructed over textual tokens. Hyperedges are generated dynamically based on pairwise token similarity,
computed as:

where τ is a similarity threshold (e.g., 0.7). To reduce noise, we limit each token to belong to at most K=4
hyperedges. The resulting incidence matrix H∈{0,1}N×∣E∣ defines the hypergraph structure, and
hyperedge features are computed using a learned transformation:
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where Wh∈Rd×d is a shared projection and σ(⋅) denotes GELU activation. A similar operation is applied to
T to obtain T′.
These structure-enhanced embeddings V′,T′ are then passed into the dual-stream transformer for cross-modal
fusion.
3.3 Dual-Stream Transformer Fusion
Our fusion architecture consists of two modality-specific transformer encoders (6 layers each), followed by
a shared cross-modal transformer with 4 layers. Each stream is initialized with the hypergraph-enhanced
embeddings and includes standard self-attention and feedforward layers. Cross-modal attention is performed
through token-level interaction:

Where Wq,Wk,Wv∈Rd×d learned projection matrices. The output of the cross-attention module is
concatenated with the self-attended features and passed through a linear projection layer, forming the final
multimodal representation z∈Rd.
3.4 Contrastive Learning Objective
To align image and text embeddings in a shared latent space, we use a symmetric InfoNCE contrastive loss
[16]. Given a batch of B aligned image-text pairs {(Ii,Ti)}i=1B, we define the similarity between the image
and text embeddings ziI and zjTas:

The image-to-text loss is:

Here, τ is a temperature parameter (set to 0.07), which controls the sharpness of similarity distribution.

3.5 Training Strategy and Implementation
The model is trained for 30 epochs with a batch size of 64 using the AdamW optimizer (learning rate 1e−4,
weight decay 0.01). To simulate cross-domain settings, we construct multi-domain training batches from
combinations of MS-COCO, RSICD, and IU X-Ray samples. This encourages generalization and structural
robustness. We employ gradient checkpointing to reduce memory usage, and model parameters total ~85M.

Table 1: summarizes key architectural components

Component Details

Visual Backbone ViT-B/16 (frozen)

Textual Backbone BERT-base (frozen)
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Hypergraph Layers 1-layer with top-4 connections

Transformer Encoder Depth 6 (per stream) + 4 (shared)

Fusion Mode Dual + Cross-attention (concat)

Loss Function Symmetric contrastive (InfoNCE)

Trainable Parameters ~85M

This framework balances representational power and modularity. It can be extended with additional
modalities (e.g., audio or tabular data) by constructing corresponding hypergraphs and introducing domain-
specific encoders.

4. Experiments and Results
To evaluate the effectiveness and generalizability of the proposed hypergraph-transformer framework, we
conduct a series of comprehensive experiments on four publicly available vision-language datasets: MS-
COCO, Flickr30K, RSICD (remote sensing), and IU X-Ray (medical imaging). These datasets cover diverse
domains with varying visual structures and textual semantics, providing a rigorous testbed for domain-
robust cross-modal learning. We benchmark our model against state-of-the-art methods including UNITER
[7], CLIP [19], CAHG [14], and ALBEF [21], using standard metrics such as Recall@1/5/10 for retrieval,
mAP for classification, and zero-shot transfer accuracy. In addition to main evaluations, we conduct ablation
studies, noise resistance tests, and visualize attention maps to validate model behavior.

4.1 Experimental Setup

Each dataset is split into training, validation, and test sets according to standard protocols. We use 29K
training and 1K validation pairs for MS-COCO, 28K pairs for Flickr30K, 10K for RSICD, and 7K for IU X-
Ray. All images are resized to 224×224 and tokenized texts are capped at 30 tokens. The model is trained
jointly across all domains using domain-balanced sampling. We report results on both in-domain test sets
and cross-domain generalization.

4.2 Image-to-Text Retrieval
Table 2 shows the image-to-text retrieval performance of our method and baselines on MS-COCO and
RSICD. Our model achieves Recall@1 of 71.2% on COCO, outperforming ALBEF (68.4%) and UNITER
(67.9%), and Recall@1 of 65.3% on RSICD, a substantial improvement over CAHG (59.5%) and CLIP
(61.2%). The gain is attributed to the hypergraph-enhanced token representations that better capture spatial
and semantic grouping.

Table 2: Image-to-text retrieval Recall@1 scores (%) across three datasets.

Method MS-COCO R@1 RSICD R@1 IU X-Ray R@1

UNITER 67.9 58.7 49.1

CLIP 66.1 61.2 51.5
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CAHG 65.8 59.5 53.2

ALBEF 68.4 60.9 52.8

Ours 71.2 65.3 56.6

These results validate the ability of our system to generalize across modality shifts and domain boundaries
without fine-tuning. In medical imaging (IU X-Ray), our method also surpasses previous work by over 3%,
indicating effective alignment even in abstract and high-noise image-text pairs.

4.3 Zero-Shot Domain Transfer

We simulate a cross-domain setting where the model is trained on MS-COCO and evaluated on RSICD and
IU X-Ray without any target domain fine-tuning. Our model achieves 52.8% zero-shot retrieval accuracy on
RSICD, compared to 47.1% by ALBEF and 44.3% by CLIP. This result highlights the benefit of dynamic
hypergraph modeling, which encodes structure rather than relying solely on domain-specific textures or
word distributions.
4.4 Ablation Study

We perform a series of ablations to isolate the effect of key components:
a. w/o Hypergraph: direct transformer fusion of image/text tokens.

b. w/o Cross-Attn: hypergraph features without cross-modal attention.

c. w/ Static Graph: hyperedges constructed offline and fixed.

d. w/ Full: our complete model.

Table 3: Ablation results showing importance of each module

Variant COCO R@1 RSICD R@1

w/o Hypergraph 66.2 58.6

w/o Cross-Attn 64.7 55.1

w/ Static Graph 67.4 61.3

Full (Ours) 71.2 65.3

The degradation without hypergraph embedding confirms its critical role. Interestingly, using static
hypergraphs also underperforms, verifying the benefit of dynamic token-specific structural modeling.
4.5 Visualization and Interpretability
To better understand the model behavior, we visualize attention weights from the cross-modal transformer
layers. As shown in Figure 3, our model accurately aligns complex phrases (e.g., “group of ships near shore”)
with non-contiguous regions, leveraging the hypergraph connections to attend jointly to semantically related
areas. Compared to baseline ViT attention, our model exhibits more clustered and interpretable alignment,
with fewer spurious links.
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Figure 3. Attention heatmaps produced by (a) the baseline Vision Transformer and (b) our proposed method

5. Discussion and Analysis
The experimental results presented in the previous section substantiate the efficacy of our proposed
framework in handling cross-domain multimodal tasks. Beyond quantitative metrics, it is important to
understand the system’s underlying dynamics, applicability scope, and potential deployment considerations.
In this section, we provide a detailed discussion of the system behavior under different settings, analyze key
failure modes, and suggest real-world integration strategies.
5.1 Generalization and Cross-Domain Robustness

One of the most striking outcomes is the model’s ability to maintain performance across radically different
domains, such as transitioning from natural images in COCO to satellite views in RSICD or grayscale
clinical scans in IU X-Ray. This cross-domain generalizability arises from two core design choices: (1) the
use of dynamic hypergraphs that capture relative feature similarities rather than relying on absolute
appearance; and (2) contrastive alignment objectives that do not require class labels, enabling the model to
discover latent similarities between heterogeneous image-text pairs.
As shown in Table 2 and Table 3, performance gains are more pronounced on datasets with lower visual-
textual coherence (e.g., RSICD, IU X-Ray), suggesting that our method better captures semantic abstraction
beyond surface-level correspondence. Compared to CLIP, which relies heavily on high-frequency co-
occurrence in large-scale training data, our method builds explicit structural relations that generalize across
visual layouts and linguistic variance.

5.2 Analysis of Learned Representations
To investigate how the model internally aligns modalities, we perform embedding space visualization using
t-SNE projection on the final image and text embeddings. Figure 4 (omitted here) shows clear clustering of
semantically similar instances even across domains. For instance, “flying aircraft” in COCO and “military
drone” in RSICD form adjacent clusters, indicating strong semantic bridging.

Furthermore, we measure modality distance variance across training and test sets. Our method exhibits
lower inter-domain embedding variance (σ = 0.137) compared to UNITER (σ = 0.218) and CAHG (σ =
0.201), confirming that our fusion mechanism reduces semantic drift across modalities and domains.
5.3 Deployment Considerations
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From a deployment standpoint, the model’s modularity enables flexible adaptation. Since the hypergraph
construction and backbone feature extraction are decoupled, inference-time optimization is feasible through:
Edge pre-processing: Low-powered devices can generate hyperedges with quantized features, offloading
transformer fusion to cloud backends.

Hypergraph caching: In applications like caption retrieval or VQA, common hypergraph structures can be
cached to reduce latency.
Domain-aware routing: Lightweight classifiers can first determine domain type (e.g., aerial, medical),
guiding the model to specialized fusion submodules if needed.

The total parameter size of ~85M is modest compared to recent large multimodal models (e.g., CLIP’s
150M+), making it practical for real-world use on mid-tier GPUs or optimized inference engines (e.g.,
TensorRT, ONNX).

5.4 Limitations and Failure Modes
Despite strong empirical results, several limitations persist. First, hypergraph construction is sensitive to
similarity thresholds. In cases of noisy features (e.g., poorly lit images or OCR errors), the system may form
irrelevant hyperedges, leading to semantic dilution. As shown in failure examples from RSICD (Figure 5,
omitted), false hyperedges connecting water, sky, and unrelated text tokens can confuse attention flow.

Second, textual ambiguity and polysemy remain challenging. For example, the word “bank” can mean
financial institution or river bank; without strong prior grounding, the model occasionally misaligns such
phrases, particularly in cross-domain zero-shot settings. One possible solution is to integrate external
knowledge graphs or entity linking modules.
Finally, inference latency increases due to the dual transformer structure and graph preprocessing. Although
acceptable for batch inference, real-time applications (e.g., robotic perception) may require pruning or
distillation, which is part of our ongoing work.

5.5 Future Directions
Several promising extensions are worth pursuing:

Hierarchical Hypergraph Modeling: Current hypergraphs model token-level relationships; extending this to
span-level or region-level semantics (e.g., sentences, object clusters) can improve abstraction and reduce
noise.
Multilingual Extension: Incorporating multilingual encoders (e.g., mBERT, XLM-R) can enable cross-
lingual multimodal alignment, vital for global applications.

Continual and Federated Learning: With data privacy gaining importance, adapting this model to
decentralized or federated settings using local hypergraph construction is an exciting direction.

Multi-hop Reasoning: For complex VQA or scene graph tasks, reasoning across multiple hyperedges and
modal transitions (text→image→text) could unlock deeper cross-modal understanding.

6. Conclusion
In this paper, we proposed a unified Hypergraph-Transformer framework for cross-domain vision-language
representation learning. By dynamically constructing hypergraphs over visual and textual tokens and fusing
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them via dual-stream and cross-modal transformer layers, our model effectively captures high-order
semantic relationships and structural correlations across modalities. This design enables robust performance
in both in-domain and cross-domain settings, as demonstrated through extensive experiments on MS-COCO,
Flickr30K, RSICD, and IU X-Ray datasets. Notably, our method surpasses prior state-of-the-art approaches
in retrieval and zero-shot generalization tasks without requiring extensive domain-specific fine-tuning.

The integration of hypergraph structure enhances the model's capacity to handle complex semantic
interactions, while the contrastive alignment loss ensures compact and discriminative cross-modal
embeddings. Through detailed ablation studies and interpretability analyses, we validated the contribution of
each component in our architecture. Furthermore, the framework demonstrates scalability, modularity, and
deployment feasibility across different domains and platforms.

Moving forward, we envision extending this framework to support multilingual modalities, multimodal
reasoning chains, and domain-specific personalization through meta-learning and continual learning
strategies. We also plan to optimize computational efficiency through model pruning, caching mechanisms,
and hybrid edge-cloud deployment pipelines. Ultimately, our approach represents a meaningful step toward
general-purpose, structured, and adaptable multimodal AI systems for real-world applications.
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