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Abstract:

To address the challenge of limited accuracy in detecting anomalies within complex structured data, this
paper proposes a structure-aware anomaly detection method based on diffusion models. The method builds a
generative diffusion framework that models the distribution of normal data through a forward noise
perturbation and reverse denoising process. This enables the identification of abnormal data. To enhance the
model's understanding of dependencies among fields in structured data, a Structure-Aware Diffusion (SAD)
mechanism is introduced. It uses a structural matrix to explicitly model the semantic and logical
relationships between fields, allowing the diffusion process to follow structural constraints. In addition, a
Dynamic Reconstruction Scoring (DRS) mechanism is proposed. During the anomaly scoring phase, it
dynamically adjusts weights based on the reconstruction uncertainty of different fields. This improves
detection accuracy for local and sparse anomalies. Experiments on public datasets show that the proposed
method outperforms traditional neural network models and baseline generative models in terms of Accuracy,
AUC, and F1-score. It effectively identifies multiple types of structured anomalies. Further ablation studies
confirm the significant contributions of the two proposed mechanisms. The results demonstrate the
effectiveness of structure awareness and dynamic scoring in high-dimensional structured anomaly detection
tasks. By integrating generative learning with structural information, this paper provides a high-accuracy,
generalizable anomaly detection approach for complex relational data. The method shows strong robustness
and practical value.
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1. Introduction

With the proliferation of data-driven applications across domains such as finance, telecommunications,
healthcare, and e-commerce, the volume and structural complexity of digital data have increased substantially
[1]. Ensuring the integrity, consistency, and reliability of such data has become a critical prerequisite for
stable system operations and informed decision-making. However, the growing complexity of data systems
has also led to a rise in anomalous behaviors, including irregular patterns, inconsistent values, and
unexpected interactions. These anomalies, if undetected, may degrade system performance, compromise
decision accuracy, and pose significant operational and security risks. As such, the development of accurate
and efficient anomaly detection methods for complex structured data is of significant practical importance.
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Conventional anomaly detection techniques—such as rule-based methods, statistical modeling, and classical
machine learning—have been widely used in various scenarios [2]. While these approaches can be effective
in narrowly defined contexts, they often suffer from limited generalizability, sensitivity to noise, and reliance
on expert knowledge. Their performance typically declines in high-dimensional, heterogeneous, and
dynamically evolving environments, where anomalous patterns may be subtle, sparse, or nonstationary.
These limitations underscore the need for more adaptive and robust detection frameworks capable of
capturing complex data dependencies and rare deviations without extensive manual intervention [3].

Recent advances in generative modeling offer promising avenues for addressing these challenges. In
particular, diffusion models have emerged as a powerful class of deep generative models capable of learning
rich data distributions through iterative noise perturbation and denoising processes. Their capacity to capture
fine-grained structures and to generate realistic reconstructions has led to significant success in domains such
as image synthesis, speech modeling, and natural language processing. These capabilities make diffusion
models well-suited for detecting anomalies that deviate from learned data distributions, particularly in
unsupervised or semi-supervised settings where labeled anomalies are scarce [4].

When applied to structured data, diffusion models can be enhanced with mechanisms that explicitly capture
inter-field dependencies and semantic relationships. Such enhancements enable the modeling process to
preserve contextual information and improve sensitivity to structurally meaningful anomalies [5]. Moreover,
generative approaches inherently support interpretability, as reconstruction deviations can provide insights
into the nature and location of anomalies.

In this context, the integration of structure-aware generative modeling and dynamic scoring strategies
represents a promising direction for anomaly detection in complex data environments. By leveraging the
strengths of diffusion models in distribution learning and reconstruction, such approaches can advance the
development of intelligent, self-adaptive monitoring systems. These systems are expected to play a critical
role in ensuring the robustness, reliability, and security of next-generation data infrastructures.

2. Related work
2.1 Anomaly Detection

Anomaly detection is a key research area in data mining and machine learning. It aims to identify samples or
patterns that deviate significantly from normal behavior. Traditional methods often rely on statistical
modeling, rule matching, or clustering techniques based on distance and density. These approaches model
data features to determine whether a sample is anomalous[6]. They perform reasonably well in low-
dimensional and simple-structured scenarios. However, in high-dimensional spaces, with complex nonlinear
relationships or noisy data, these methods often fail to model accurately. This leads to a decline in detection
performance. In addition, such methods typically require preset parameters or expert knowledge, making it
hard to adapt to changing data characteristics[7].

With the advancement of machine learning, especially deep learning, model-based anomaly detection has
gained popularity[8,9]. Neural networks, autoencoders, and generative models have shown strong
capabilities in extracting high-dimensional features and capturing complex patterns. Compared to traditional
methods, these models offer better nonlinear representation and higher detection accuracy. They are
particularly suitable for complex data scenarios such as network traffic analysis, graph-based data
monitoring, and industrial sensor anomaly detection. However, their application to relational structured data
still faces challenges. These include maintaining logical relationships between data, handling missing values
and noise, and interpreting detection results effectively[10].
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To improve anomaly detection in complex data, generative models have been increasingly adopted. They
show strong potential, especially in unsupervised or semi-supervised tasks. Generative models learn the
distribution of normal data and use it to detect samples that do not conform to this distribution[11].
Representative methods such as variational autoencoders and generative adversarial networks have achieved
significant results in unstructured data like images and text. In contrast, diffusion models offer a unique
approach through gradual perturbation and reconstruction. They provide a new way to model data
distributions and detect anomalies. This makes them particularly effective in identifying samples that
significantly deviate from normal patterns. As a result, diffusion models offer promising techniques and
insights for anomaly detection in structured data.

2.2 Diffusion Model

As an emerging method in deep generative modeling, diffusion models have gained increasing attention in
recent years[12,13,14]. The core idea is to gradually add noise to the data, transforming it into a standard
Gaussian distribution, and then recover the original data distribution through a learned denoising process.
Compared to traditional generative models, diffusion models offer stronger modeling capabilities and more
stable training. They can effectively capture complex structures and fine-grained features in data. This
progressive generation process improves the quality of generated data and provides a more intuitive
framework for understanding and controlling the generation[15]. As a result, diffusion models have been
widely applied in image, speech, and text domains.

With the advancement of diffusion models, researchers have expanded their application scope. Initially
focused on unstructured data generation, they have since been extended to graph modeling, time series
forecasting, and complex distribution learning[16,17]. A key advantage of diffusion models is their high-
fidelity fitting of data distributions. This makes them particularly effective in anomaly modeling. By learning
the evolution path of normal data, the model can identify abnormal patterns during the reverse reconstruction
process| 18]. These patterns are often difficult to recover, enabling efficient distinction of anomalous samples.
In addition, the diffusion process itself allows for the interpretation and visualization of anomalies. This gives
the model both detection capability and a degree of interpretability[19].

In structured data scenarios, especially in relational databases, the use of diffusion models is still in an
exploratory phase[20,21]. However, their strong performance in other data types provides a solid foundation
for extension. Structured data is characterized by clear patterns and dependencies between fields. When
modeling these internal structures, diffusion models can be designed with tailored noise mechanisms and
network architectures to preserve semantic consistency and logical relationships. With their powerful
generative ability and flexible modeling framework, diffusion models hold promise as a key technique for
anomaly detection in relational databases. They can drive the intelligent evolution of database systems and
offer new solutions for complex data modeling.

3. Method

This study proposes a diffusion-based anomaly detection algorithm tailored for complex structured data,
aiming to enhance detection accuracy by capturing underlying dependencies and distributional deviations. It
aims to improve the identification of abnormal patterns in complex structured data using deep generative
modeling capabilities. The method first preprocesses and embeds multi-dimensional data from relational
databases. It then constructs vector representations suitable for the diffusion process. Through forward noise
perturbation and reverse denoising reconstruction, the model learns the latent distribution of normal data.
Reconstruction error is used as the basis for anomaly detection. Two innovations are introduced to enhance
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model performance and adaptability. The first is Structure-Aware Diffusion (SAD). This mechanism

incorporates structural attention based on field relationships within the data. It ensures logical consistency

between fields during the diffusion process. The second is Dynamic Reconstruction Scoring (DRS). During

the denoising phase, it dynamically adjusts reconstruction weights across dimensions. This improves

sensitivity to local anomalies and rare patterns. The proposed algorithm balances modeling accuracy with

structural adaptability. It offers a robust and scalable solution for anomaly detection in structured data. The
model architecture is shown in Figure 1.
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Figure 1. Overall model architecture diagram

3.1 Structure-Aware Diffusion

In relational databases, there are complex logical dependencies and structural relationships between data
fields. Simply treating tabular data as an independent set of vectors will ignore this structural information,
thus affecting the accuracy of anomaly detection. To this end, we introduce the Structure-Aware Diffusion
(SAD) mechanism to enhance the model's ability to express dependency information within the table by
fusing the relationship structure between fields during the diffusion modeling process. In each diffusion step,
the model not only learns the evolution process of the data itself, but also perceives the correlation between
columns through the structural encoding mechanism to improve the modeling ability of structural anomalies.
Its module architecture is shown in Figure 2.
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Figure 2. SAD module architecture

Let the original input table data be X =[x,,x,.,...,x,]€ R™, where n represents the number of samples and
d is the field dimension. In the forward diffusion process, we add noise to each time step t, defined as:

q(x, | %) = N(x,;4/a, x,,(1-a,)])

Where a, €(0,1) represents the noise attenuation coefficient, x, is the initial input, and x, is the
perturbation representation of the t-th step. At the same time, in order to embed structural information, we

introduce a structure-aware embedding matrix S € R“**, which represents the dependency strength between
fields. A structural attention term is added in each diffusion step, so that the network output depends on the
weights between fields:

X, =x, +AS,

Where A is the structural adjustment coefficient, which controls the influence of structural perception
information on the current representation. This operation forces the model to explicitly learn the interaction
between fields during the perturbation process, which helps to more accurately distinguish structural
anomalies in the reverse reconstruction stage.

In the reverse process p,(x,_, |x,), we use the conditional denoising network to estimate the noise at each

time step and simultaneously fuse the structural information to guide the reconstruction path. The
reconstruction process is defined as:

Po(X, 1 1%) = N(x,_ 5 t15(x,,1,5), > (x,,1))
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Here p, 1is the mean estimate output by the neural network, which explicitly depends on the structure
matrix S; while Ze is the prediction variance, which is used to capture the reconstruction uncertainty.

After multi-step reconstruction, X, is finally obtained, and the difference is compared with the original

data x, as the basis for subsequent abnormality discrimination.

To better adapt to multi-type fields, the structure-aware mechanism further introduces field type embedding
representation E € R“", which is obtained through the projection function ¢:R* = R":

e, =¢(x;),j=12,..d
The structure matrix S 1is obtained by calculating the similarity of field embedding, and its form is:

T
€ ej

ol e

This design can adaptively capture implicit semantic relationships between fields, making the diffusion
process more structurally sensitive and generalizable, and effectively improving the model's ability to
identify potential complex anomalies.

3.2 Dynamic Reconstruction Scoring

In relational database anomaly detection, different fields have significant differences in sensitivity to
anomalies, and a unified reconstruction error calculation method is often difficult to fully characterize local
or rare anomalies. To this end, this study proposes a dynamic reconstruction scoring mechanism (DRS),
which introduces dynamic weights and dimensional sensitivity estimates to weighted aggregate
reconstruction errors of different fields, thereby enhancing the model's ability to respond to fine-grained
anomalies. This mechanism is embedded in the denoising stage of the diffusion model, and automatically
adjusts the scoring strategy based on the reconstruction difficulty and uncertainty of each sample in each
field dimension.

Assume that the final reconstructed sample of the model is X, € R’ the original input is x, € R, and its
initial reconstruction error vector is defined as:

%

e=x,—x |

In order to dynamically perceive the reconstruction sensitivity of different dimensions, the field confidence
vector e R’ s introduced, each dimension of which is estimated by the cumulative reconstruction
variance at each time step during the diffusion process:

1 T
V; :_Zo—;(xt)j
TS

Where o} (x,); represents the reconstruction uncertainty of the jth dimension at the tth step, and T is the

number of diffusion steps. The dynamic weight vector we R’ is constructed according to the confidence,
which is defined as:
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1
y,+e

w; =

¢ 1s a smoothing factor, which is used to avoid instability caused by a denominator of zero or too small.
This weight vector can dynamically focus on reconstructing dimensions with smaller variance and more
reliable structure, effectively improving the ability to distinguish abnormal signals.

The final anomaly score is composed of the weighted sum of the reconstruction errors in each dimension:
d
A(x) = Zl w;-e,
=

This scoring function can adjust the importance of different dimensions according to the actual
reconstruction performance to avoid the dilution of abnormal signals by the average effect. At the same time,
in order to further enhance the robustness of anomaly detection, a standardization operation is introduced to
normalize the reconstruction error of each dimension:

s ST H
j

g,

¢; and o, are the mean and standard deviation of the j-th dimension reconstruction error in the training

set. This mechanism enables the model to not only detect global structural mutations, but also have the
ability to perceive tiny local anomalies, thereby achieving higher-resolution anomaly recognition.

4. Experimental Results
4.1 Dataset

This study employs the publicly available KDD Cup 1999 dataset as the primary experimental benchmark
for evaluating the proposed anomaly detection approach. Originally developed for network intrusion
detection, this dataset has been extensively utilized in structured anomaly detection research due to its
diverse range of abnormal patterns and well-characterized normal behavior. It is organized in a structured
tabular format, comprising 41 features that span discrete, continuous, and categorical variables, including
attributes such as connection type, service protocol, and data transfer volume.

With nearly five million labeled connection records, the dataset presents a highly imbalanced class
distribution, where the majority of instances are normal, and the remainder belong to various attack
categories such as Denial-of-Service (DoS), Probe, User-to-Root (U2R), and Remote-to-Local (R2L). This
imbalance poses significant challenges for anomaly detection methods, particularly in identifying rare or
subtle anomalies. Each record can be interpreted as a high-dimensional structured instance, potentially
containing latent dependencies among features, making the dataset suitable for testing models that
incorporate structure-aware mechanisms.

To ensure effective model training, redundant or low-contribution features are commonly removed or
normalized, and categorical attributes are embedded into continuous vector representations compatible with
neural architectures. While not inherently relational in nature, the KDD Cup 1999 dataset provides a well-
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structured, labeled, and widely recognized testbed for assessing detection accuracy, generalization capability,
and robustness in structured anomaly detection tasks.

4.2 Experimental setup

This study evaluates the proposed anomaly detection method based on the diffusion model in a unified
experimental environment to ensure the reproducibility and fairness of the results. All experiments are
conducted on a hardware platform with consistent configuration, including a high-performance GPU to
accelerate the model training and inference process. In order to enhance the stability and generalization
ability of the model, standardized preprocessing and Early Stopping strategies are used in the training
process, and the data set is divided into training and test sets according to the conventional division ratio. In
the anomaly detection evaluation, the three indicators Acc, Auc and Fl-score are mainly referenced to
measure the detection performance of the model on different anomaly categories.

In addition, the key parameters of the model are determined by cross-validation, and the number of diffusion
steps, noise adjustment factors, structural perception coefficients and dynamic reconstruction weights are all
tuned within a reasonable range. The comparison models include traditional statistical methods and
advanced deep learning anomaly detection methods to ensure that the evaluation is widely representative.
The main experimental hyperparameter settings are shown in Table 1.

Table 1: Hyperparameter setting

Parameter Value

Hardware NVIDIA RTX 3090 GPU, 128GB RAM, 32 CPU
cores

OS & Framework Ubuntu 20.04, Python 3.10, PyTorch 2.0

Dataset Split 70% Training / 30% Testing

Diffusion Steps (T) 1000

Learning Rate le-4

Batch Size 256

Structure Coefficient (1) 0.5

Weight Smoothing le-6

Optimizer Adam

4.3 Experimental Results

1) Comparative experimental results
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First, this paper presents a set of comparative experiments conducted with several existing models. These
experiments are designed to evaluate the performance of the proposed method under consistent conditions.

The comparative results, which reflect the effectiveness of different approaches, are organized and displayed
in Table 2.

Table 2: Comparative experimental results

Method Acc Auc F1-Score
MLP[22] 0.872 0.903 0.854
LSTM[23] 0.881 0.915 0.862
CNNJ[24] 0.889 0.921 0.870
Transformer[25] 0.893 0.930 0.878
CNN+Transformer[26] 0.901 0.937 0.884
Ours 0.918 0.953 0.902

The experimental results show that traditional neural network models, such as MLP and LSTM, have
demonstrated certain effectiveness in anomaly detection on structured data. Their F1-scores reached 0.854
and 0.862, respectively. However, these models have limitations in capturing complex dependencies among
fields. They are relatively insensitive to data structure and struggle to detect anomalies that arise from
coordinated changes across related fields in relational databases. This limitation is more evident in scenarios
with sparse anomaly distributions or weak inter-field dependencies.

In contrast, models like CNN and Transformer exhibit better generalization when handling spatial locality
and long-range dependencies. The Transformer model, in particular, benefits from the self-attention
mechanism, which captures hidden relationships between fields. This results in improved AUC and F1-score,
reaching 0.930 and 0.878, respectively. However, despite its global modeling capabilities, the Transformer
architecture does not fully incorporate domain-specific structural information. When applied to tasks
involving explicit logical relationships among database fields, it lacks the granularity needed for precise
modeling. This leads to blurred detection boundaries and reduced sensitivity to subtle anomalies.

The model that combines CNN and Transformer further improves performance. It outperforms each
standalone model across all three metrics. This suggests that combining local perception and global attention
enhances anomaly detection to some extent. The F1-score achieved 0.884. Nevertheless, without a structure-
aware mechanism, this architecture still struggles to fully adapt to the complex organization of fields in
relational databases. In cases where anomalies are subtle and affect only local fields, the model's recognition
ability remains limited.

The proposed Structure-Aware Diffusion (SAD) model combined with the Dynamic Reconstruction Scoring
(DRS) mechanism achieved the best results across all evaluation metrics. The F1-score reached 0.902. By
embedding structural information during the diffusion process and dynamically adjusting the importance of
each field during scoring, the method significantly improves the modeling and detection of local, rare, and
structure-dependent anomalies. These results confirm the advantages of integrating structure-aware
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mechanisms with generative modeling. The proposed approach provides a solid technical foundation for
applying anomaly detection in real-world relational database systems.

2) Ablation Experiment Results

Secondly, this paper provides the results of ablation experiments to evaluate the individual contributions of
key components within the proposed model. These experiments help analyze the impact of each module by

systematically modifying the model structure. The detailed results of the ablation study are presented in Table
3.

Table 3: Ablation Experiment Results

Method Acc Auc F1-Score
BaseLine 0.891 0.926 0.872
+SAD 0.903 0.938 0.884
+DRS 0.898 0.934 0.879
Ours 0.918 0.953 0.902

As shown in the ablation results in Table 3, the BaseLine model, without structure-aware and dynamic
reconstruction mechanisms, achieves acceptable performance in relational database anomaly detection.
However, its overall effectiveness is limited, with an F1-score of only 0.872. This indicates that relying solely
on the basic generative capacity of the diffusion model is insufficient to fully capture semantic relations and
local structural features among database fields. As a result, the model struggles to distinguish anomalous
samples accurately.

When the structure-aware diffusion module (+SAD) is added to the BaseLine model, performance improves
significantly. The Fl-score rises to 0.884, and AUC increases to 0.938. These results confirm the
effectiveness of the SAD module in modeling field dependencies. It allows the model to retain structural
information between fields during the denoising process, which enhances sensitivity to structural anomalies.
The SAD module enables the diffusion process to account for not only numerical perturbations but also
relational constraints. This is especially important for identifying logical anomalies in relational databases.

On the other hand, introducing the dynamic reconstruction scoring mechanism (+DRS) also leads to
performance gains. The Fl-score improves to 0.879. Unlike SAD, DRS focuses on the anomaly scoring
phase. It dynamically adjusts reconstruction weights for each field, improving the model's response to local
changes and fine-grained anomalies. In scenarios where anomalies affect only a few fields, DRS helps
prevent anomaly signals from being diluted by global error averaging, thereby increasing detection accuracy.

When SAD and DRS are used together, the model achieves the best performance across all three evaluation
metrics. The Fl-score reaches 0.902. This shows that the two modules complement each other. SAD
enhances the expressiveness of anomaly modeling, while DRS improves discriminative power during
detection. The final results demonstrate the importance and practical value of the dual-module design
proposed in this study for anomaly detection in relational databases.

3) Effect of different diffusion steps on detection performance
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This paper also investigates the effect of varying the number of diffusion steps on the overall detection
performance of the proposed model. By systematically adjusting the number of steps in the diffusion process,
the study aims to understand how the depth of the generative process influences the model's ability to capture
data distribution and identify anomalies. This analysis provides insights into the relationship between
diffusion step configuration and detection accuracy. The corresponding experimental results that illustrate
this impact are comprehensively presented in Figure 3.

0.96- Impact of Diffusion Steps on Detection Performance
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Figure 3. Effect of different diffusion steps on detection performance

The results in the figure show that the number of diffusion steps has a significant impact on anomaly
detection performance. As the number of steps increases, the model shows steady improvement in Accuracy,
AUC, and F1-score. This suggests that a longer diffusion process helps the model better learn the underlying
data distribution, leading to more accurate reconstruction of normal patterns and identification of anomalies.

Between 500 and 1000 steps, the performance improvement is particularly notable. In this range, the model
receives sufficient perturbation information without being affected by excessive noise. This demonstrates the
robustness of the diffusion model in capturing anomalous patterns. The result indicates that anomalies in
relational databases often involve coordinated changes across multiple fields. A moderate number of
diffusion steps enhances the model's ability to learn such high-dimensional structural dependencies.

When the number of steps reaches 1000, the model achieves optimal performance. The F1-score and AUC
reach 0.902 and 0.953, respectively. This shows that the method improves not only global accuracy but also
the detection of sparse, subtle, and structure-sensitive anomalies. The introduction of the Structure-Aware
Diffusion (SAD) and Dynamic Reconstruction Scoring (DRS) mechanisms enables dynamic capture of each
field's contribution during diffusion. This strengthens the model's ability to detect complex anomaly
distributions.

However, when the number of steps increases further to 1250, the performance slightly declines or stabilizes.
This suggests that an overly long diffusion chain may lead to reconstruction quality fluctuations or overfitting,
which interferes with accurate anomaly detection. Therefore, selecting an appropriate number of diffusion
steps is critical. It should balance data characteristics and computational efficiency. These findings further
confirm the rationality and practical value of the structure-aware and generative modeling design proposed in
this study.
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4) Analysis of the impact of embedding dimension selection on model performance

This paper also provides a detailed analysis of how the selection of embedding dimension affects the overall
performance of the proposed model. The study systematically explores different embedding dimensions to
examine their influence on the model's capacity to represent structured data and capture complex
relationships among fields. By evaluating multiple configurations, the analysis aims to identify an appropriate
embedding size that balances representational richness and computational efficiency. The experimental setup
and outcomes related to this investigation are thoroughly illustrated in Figure 4.
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Figure 4. Analysis of the impact of embedding dimension selection on model performance

As shown in Figure 4, the embedding dimension has a clear impact on model performance. With increasing
dimension, Accuracy, AUC, and F1-score all show an upward trend in the early stages. This indicates that
low-dimensional embeddings are insufficient to capture the complex semantic and structural dependencies
among fields in relational databases, which limits the model's expressive power. Increasing the dimension
allows the model to better represent potential relationships between fields, which helps in identifying
anomalous patterns.

When the embedding dimension reaches 64, all three metrics peak. The model achieves its best performance,
with an Fl-score of 0.902 and an AUC of 0.953. This shows that at this level, the model retains enough
semantic information while maintaining effective parameter control. The structure-aware diffusion model
learns field-level structural relations more stably and captures anomaly signals during reverse reconstruction.
A 64-dimensional embedding offers a good trade-off between modeling capacity and computational cost,
making it suitable for modeling high-dimensional relational data.

When the embedding dimension increases further to 128 or 256, the model performance slightly declines.
This is especially evident in the drop of the Fl-score. The results suggest that excessively high dimensions
may introduce redundant features, add noise during learning, and increase the risk of overfitting in the
diffusion process. This reduces the model's generalization ability in detecting anomalies. The problem is
more pronounced when training samples are limited or anomalies are sparse, leading to less precise detection
boundaries.

These results confirm that the embedding dimension plays a crucial role as a key hyperparameter in the
modeling of structured data. The choice of embedding size has a direct and significant impact on both the
representational capacity of the model and its ability to accurately detect anomalies. An appropriately
selected embedding dimension enables the model to capture complex relationships among fields while
maintaining computational efficiency. In this study, the proposed method demonstrates that using a moderate
embedding size strikes a balance between sufficient semantic representation and model stability. This finding
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highlights the importance of embedding design in structured anomaly detection tasks. Moreover, it suggests

that integrating structure-aware mechanisms with embedding optimization forms an effective strategy to

enhance the overall performance of diffusion-based models. Such a combination supports not only accurate
anomaly identification but also improves the model's generalization across diverse data conditions.

5) The impact of anomaly type distribution on model detection accuracy

This paper also explores the impact of anomaly type distribution on the detection accuracy of the proposed
model. Different categories of anomalies can vary significantly in terms of their structural patterns, frequency,
and visibility within the data, which may affect how effectively a model can identify them. To better
understand this relationship, the study conducts experiments across multiple anomaly types, allowing for a
comprehensive evaluation of the model's adaptability and sensitivity to diverse abnormal behaviors. This
analysis is crucial for assessing the robustness of the model in real-world scenarios where anomalies may be
unevenly distributed and exhibit different levels of complexity. The corresponding experimental results that
illustrate the influence of anomaly type distribution on model performance are presented in detail in Figure 5.
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Figure 5. The impact of anomaly type distribution on model detection accuracy

The experimental results in Figure 5 show clear differences in detection accuracy across various types of
anomalies. DoS and Probe anomalies perform well across all three metrics: Accuracy, AUC, and F1-score.
This indicates that the model can accurately distinguish these types from normal behavior. Such anomalies
often involve significant changes across multiple fields. They have strong structural patterns, making them
easier to detect through diffusion modeling and structure-aware mechanisms.

In contrast, the detection performance for U2R and R2L anomalies is relatively low, especially in terms of
F1-score. These anomalies tend to be more covert. They affect fewer fields and often cause only minor shifts
in certain discrete attributes. This presents challenges for the reconstruction process. Although the model
integrates structure-aware diffusion and dynamic scoring, sparse and subtle anomalies like these are still
prone to false negatives or misclassifications. This highlights the need for further optimization when dealing
with low-frequency and hidden anomalies.

In addition, the detection of Logic Error and Data Corruption anomalies achieves moderate performance.
These anomalies are usually non-attacking structural issues. They often involve inconsistencies in field
values, invalid combinations, or rule violations. After modeling field relationships using the structure matrix
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S, the model can partially capture the deviation patterns. However, detection still depends on the precision of
structural modeling and the accuracy of embedding representations.

Overall, the results confirm that the type of anomaly directly impacts detection performance. The proposed
method shows clear advantages in detecting structural mutations and highly distinctive anomalies. However,
in cases of sparse or low-visibility anomalies, further improvement is needed. Enhancing fine-grained
structural modeling and increasing sensitivity to local patterns may help boost overall detection capability.
These findings provide a clear direction for future optimization.

6) Loss function changes with epoch
This paper also gives a graph of the loss function changing with epoch, as shown in Figure 6.

B Training and Validation Loss over Epochs
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Figure 6. Loss function changes with epoch

As shown in Figure 6, the proposed model exhibits a consistent downward trend in the loss function during
training. This indicates that the model is gradually learning the true data distribution in the relational database.
The training loss decreases rapidly within the first 50 epochs, reflecting the model's strong ability to quickly
fit the distribution of normal samples at an early stage. This aligns with the powerful data modeling capacity
of diffusion models, especially for high-dimensional structured data.

Between 50 and 150 epochs, the decrease in training loss slows down and gradually stabilizes. The validation
loss also remains relatively steady during this phase. This suggests that the model has effectively learned the
pattern features on the training set and generalizes well to unseen data. The combination of Structure-Aware
Diffusion (SAD) and Dynamic Reconstruction Scoring (DRS) helps build robust representations across
different fields, avoiding performance fluctuations due to overfitting.

The curve shows that training loss is consistently lower than validation loss, but the gap is small and both
curves follow a similar trend. This further indicates that the model maintains good structural alignment and
anomaly modeling capability throughout training. The absence of a significant rise in the validation loss
curve suggests that no clear overfitting occurred during the training process. This is particularly important for
anomaly detection tasks in relational databases, where data sparsity and type diversity are common.

Overall, the figure confirms that the diffusion model demonstrates good convergence and training stability in
structured data anomaly detection. It also shows that, with appropriate structural guidance and dynamic
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scoring, the model can maintain expressive power while ensuring a well-controlled loss convergence process.
This leads to higher detection accuracy and improved robustness.

5. Conclusion

This study presents an anomaly detection framework tailored for high-dimensional structured data, grounded
in a generative modeling paradigm based on diffusion processes. The proposed method introduces two novel
components: a Structure-Aware Diffusion (SAD) mechanism and a Dynamic Reconstruction Scoring (DRS)
mechanism. The SAD module integrates inter-feature dependencies directly into the diffusion trajectory,
enabling the model to preserve and exploit structural relationships within the data. The DRS module further
refines detection sensitivity by dynamically weighting reconstruction errors according to dimension-specific
uncertainty. Through a forward noise perturbation and reverse denoising process, the model effectively learns
the underlying data distribution, thereby enhancing its capacity to identify anomalous patterns. Experimental
evaluations across multiple metrics demonstrate that the proposed approach consistently surpasses
conventional neural architectures in anomaly detection accuracy, particularly in the presence of sparse or
structure-dependent anomalies. By explicitly encoding feature dependencies and incorporating adaptive
scoring strategies, the method addresses key limitations of existing approaches—namely, the inability to
generalize across complex data distributions and the lack of interpretability in anomaly attribution. The
model’s structural awareness facilitates precise modeling of semantic correlations among features, while the
dynamic scoring mechanism ensures robustness against noise and local irregularities. This dual-modular
design yields a comprehensive framework capable of detecting both global and fine-grained anomalies,
offering significant practical utility in real-world data analysis settings.

The proposed method is particularly applicable to domains characterized by complex structured data and
stringent accuracy requirements, such as financial fraud detection, network security monitoring, clinical
anomaly screening, and large-scale enterprise system diagnostics. In such contexts, the combination of
structural sensitivity, generative flexibility, and scoring adaptivity provides a compelling solution to the
limitations of traditional rule-based or shallow learning techniques. Furthermore, the model’s unsupervised
nature reduces dependence on labeled data, making it well-suited for deployment in environments where
anomaly labels are scarce or evolving. Future research directions include extending the framework to
accommodate graph-structured inputs, integrating temporal modeling for sequential anomaly detection, and
exploring contrastive or self-supervised pretraining to enhance generalization in low-data regimes.
Additionally, the adaptation of lightweight diffusion models for streaming or online inference scenarios
warrants further investigation, particularly in latency-sensitive applications. These extensions have the
potential to expand the framework’s applicability and further solidify its role in the next generation of
intelligent, adaptive anomaly detection systems.

References

[1] Gadde, Hemanth. "Al-Driven Anomaly Detection in NoSQL Databases for Enhanced Security." International
Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence 14.1 (2023): 497-522.

[2] Singh, Jatin Pal. "Enhancing Database Security: A Machine Learning Approach to Anomaly Detection in NoSQL
Systems." International Journal of Information and Cybersecurity 7.1 (2023): 40-57.

[3] Landauer, Max, et al. "Deep learning for anomaly detection in log data: A survey." Machine Learning with
Applications 12 (2023): 100470.

[4] Quatrini, FElena, et al. "Machine learning for anomaly detection and process phase classification to improve safety
and maintenance activities." Journal of Manufacturing Systems 56 (2020): 117-132.


http://www.mfacademia.org/index.php/jcssa

Journal of computer science and software applications
https://www.mfacademia.org/index.php/jcssa

ISSN:2377-0430
Vol. 5, No. 5, 2025

[5] Giimiigbas, Dilara, et al. "A comprehensive survey of databases and deep learning methods for cybersecurity and
intrusion detection systems." IEEE Systems Journal 15.2 (2020): 1717-1731.

[6] Lim, Willone, et al. "Future of generative adversarial networks (GAN) for anomaly detection in network security:
A review." Computers & Security 139 (2024): 103733.

[7] Trilles, Sergio, Sahibzada Saadoon Hammad, and Ditsuhi Iskandaryan. "Anomaly detection based on artificial
intelligence of things: A systematic literature mapping." Internet of Things 25 (2024): 101063.

[8] Cao, Yunkang, et al. "A survey on visual anomaly detection: Challenge, approach, and prospect." arXiv preprint
arXiv:2401.16402 (2024).

[9] Li, Xiaofan, et al. "Promptad: Learning prompts with only normal samples for few-shot anomaly
detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

[10]Adhikari, Deepak, et al. "Recent advances in anomaly detection in Internet of Things: Status, challenges, and
perspectives." Computer Science Review 54 (2024): 100665.

[11]Altulaihan, Esra, Mohammed Amin Almaiah, and Ahmed Aljughaiman. "Anomaly detection IDS for detecting
DoS attacks in [oT networks based on machine learning algorithms." Sensors 24.2 (2024): 713.

[12]Huang, Yi, et al. "Diffusion model-based image editing: A survey." arXiv preprint arXiv:2402.17525 (2024).

[13]Fuest, Michael, et al. "Diffusion models and representation learning: A survey." arXiv preprint
arXiv:2407.00783 (2024).

[14]Cao, Hanqun, et al. "A survey on generative diffusion models." IEEE Transactions on Knowledge and Data
Engineering (2024).

[15]Mousakhan, Arian, Thomas Brox, and Jawad Tayyub. "Anomaly detection with conditioned denoising diffusion
models." DAGM German Conference on Pattern Recognition. Cham: Springer Nature Switzerland, 2024.

[16]Qi, Pian, et al. "Model aggregation techniques in federated learning: A comprehensive survey." Future Generation
Computer Systems 150 (2024): 272-293.

[17]Yao, Hang, et al. "GLAD: towards better reconstruction with global and local adaptive diffusion models for
unsupervised anomaly detection." European Conference on Computer Vision. Cham: Springer Nature Switzerland,
2024.

[18]Liu, Jing, et al. "A survey on diffusion models for anomaly detection." arXiv preprint arXiv:2501.11430 (2025).

[19]Tebbe, Justin, and Jawad Tayyub. "Dynamic addition of noise in a diffusion model for anomaly
detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

[20]Fucka, Matic, Vitjan Zavrtanik, and Danijel Skoc¢aj. "TransFusion—a transparency-based diffusion model for
anomaly detection." European conference on computer vision. Cham: Springer Nature Switzerland, 2024.

[21]Wei, Changyun, et al. "TDAD: Self-supervised industrial anomaly detection with a two-stage diffusion
model." Computers in Industry 164 (2025): 104192.

[22]Zhong, Zhijie, et al. "PatchAD: A lightweight patch-based MLP-mixer for time series anomaly detection." arXiv
preprint arXiv:2401.09793 (2024).

[23]Shrestha, Rakesh, et al. "Anomaly detection based on Istm and autoencoders using federated learning in smart
electric grid." Journal of Parallel and Distributed Computing 193 (2024): 104951.

[24]Zhang, Jiajia, et al. "A light CNN based on residual learning and background estimation for hyperspectral
anomaly detection." International Journal of Applied Earth Observation and Geoinformation 132 (2024): 104069.


http://www.mfacademia.org/index.php/jcssa

Journal of computer science and software applications
https://www.mfacademia.org/index.php/jcssa

ISSN:2377-0430

Vol. 5, No. 5, 2025
[25]Ma, Mingrui, Lansheng Han, and Chunjie Zhou. "Research and application of Transformer based anomaly
detection model: A literature review." arXiv preprint arXiv:2402.08975 (2024).

[26]Zhu, Bingke, et al. "ADFormer: Generalizable Few-Shot Anomaly Detection with Dual CNN-Transformer
Architecture." IEEE Transactions on Instrumentation and Measurement (2024).


http://www.mfacademia.org/index.php/jcssa

	2.2 Diffusion Model
	3.1 Structure-Aware Diffusion
	3.2 Dynamic Reconstruction Scoring
	4.1 Dataset
	4.2 Experimental setup
	4.3 Experimental Results
	1)Comparative experimental results
	2)Ablation Experiment Results
	3)Effect of different diffusion steps on detection p
	4)Analysis of the impact of embedding dimension sele
	5)The impact of anomaly type distribution on model d
	6)Loss function changes with epoch


