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Abstract:

This study explores the efficient fine-tuning method of the LoRA (Low-Rank Adaptation) algorithm in a
low-resource environment, and experimentally evaluates its performance under different data scales and
low-rank matrix parameter r settings. For scenarios with limited computing resources, LoRA introduces a
low-rank matrix to efficiently adapt the parameters of the pre-trained model, significantly reducing the
memory usage and computing requirements. The experimental results show that with only 1% to 10% of the
training data, the ROUGE indicator of LoRA fine-tuning is only slightly lower than that of full parameter
fine-tuning, verifying its effectiveness in low-resource data environments. At the same time, the analysis of
the r value found that a smaller r value can ensure better computational efficiency, while an appropriate
increase in the r value can improve the quality of the summary, but when r exceeds a certain threshold, the
performance gain tends to stabilize, indicating that LoRA needs to balance model performance and
computational overhead. Overall, LoRA provides an efficient and feasible solution for large-scale model
fine-tuning in a low-resource environment, and has extensive research value in future applications.
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1. Introduction
In the wave of artificial intelligence development in recent years, large-scale pre-trained language models
(LLMs) have become an important cornerstone for promoting the advancement of natural language
processing (NLP) technology. However, such models are often large in scale, with the number of parameters
reaching tens of billions, making it difficult to perform efficient parameter fine-tuning in scenarios with
limited computing resources. Traditional full-parameter fine-tuning methods not only require extremely high
computing resources, but also face huge challenges in data storage and optimization. Therefore, in low-
resource environments, how to effectively customize and fine-tune large models with minimal computing
costs has become one of the important research directions for the current implementation of artificial
intelligence applications. LoRA (Low-Rank Adaptation), as a parameter efficient fine-tuning technology, can
achieve efficient adaptation of large models by introducing the idea of low-rank decomposition while only
updating a very small number of trainable parameters, thereby providing a feasible solution in low-resource
environments[1].
In low-resource scenarios, limited computing power makes it difficult to implement full-parameter fine-
tuning methods, and the introduction of LoRA greatly alleviates this problem. LoRA avoids large-scale
updates to the original model weights by adding low-rank matrices to specific layers and adjusting only these
small-scale parameter matrices during training. This approach not only significantly reduces video memory
usage, but also achieves an effect close to full parameter fine-tuning under limited data and computing
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conditions, making model adaptation in low-resource environments more feasible. For example, in
application scenarios such as edge computing devices, mobile devices, and even embedded systems, LoRA
can effectively reduce storage and computing costs, allowing large-scale pre-trained models that were
originally difficult to adapt to be widely used. In addition, in industry applications such as financial risk
control, medical diagnosis, and intelligent customer service, it is often difficult to fine-tune large models on a
large scale due to the need for computing resources or privacy protection[2]. LoRA's low-rank adaptation
strategy provides a new solution for such scenarios[3].
In addition to the limitation of computing resources, the lack of data resources is also an important challenge
faced by model fine-tuning in low-resource environments. In many practical application scenarios, the cost of
obtaining domain-specific data is high, and may even be strictly restricted due to data privacy or compliance
requirements. Traditional full parameter fine-tuning usually requires a large amount of high-quality annotated
data, while LoRA's low-rank optimization method has relatively low data requirements and can effectively
adjust the model's behavior even with a small number of samples, thereby improving its performance on
specific tasks[4]. This makes LoRA more adaptable in low-resource environments, especially in low-resource
language modeling, few-shot learning, and personalized tasks in specific fields. For example, in medical text
analysis, full parameter fine-tuning is difficult to achieve because the acquisition and annotation of high-
quality medical data requires professional knowledge, while LoRA can achieve effective domain adaptation
with only a small amount of data, improving the accuracy of medical text classification or summary
generation[5].
From a technical perspective, LoRA also has strong advantages in multi-task learning and transfer learning
scenarios by reducing the amount of parameter updates required during training. In multi-task learning, due to
the shared information between multiple tasks, traditional full parameter fine-tuning often leads to parameter
redundancy and overfitting problems, while LoRA can learn key features between different tasks in a more
compact way, thereby improving the generalization ability of the model. At the same time, in cross-language
migration tasks, LoRA can effectively adapt to the characteristics of different languages without retraining
the entire model, which greatly reduces the computational cost of cross-language migration. In addition,
LoRA's modular design enables it to be efficiently deployed in different model architectures. Whether it is
NLP models such as BERT and GPT, or ViT (Vision Transformer) for computer vision, LoRA's optimization
strategy can achieve efficient parameter fine-tuning[6].
In summary, as an efficient fine-tuning method, LoRA shows great application potential in low-resource
scenarios. It can not only alleviate the challenges brought by limited computing resources, but also achieve
efficient model adaptation in data-constrained environments, while showing good generalization capabilities
in scenarios such as multi-task learning and cross-language migration. With the continuous development of
artificial intelligence technology and the gradual expansion of large model application scenarios, the research
and application of LoRA in low-resource environments will become an important direction in the future. By
deeply exploring LoRA's optimization strategies and application scenarios, further improving its adaptation
efficiency and model performance, it will help promote the implementation of artificial intelligence
technology in more fields and provide more efficient and feasible solutions for large model fine-tuning in
low-resource environments.

2. Related Work
Recent advancements in time-series modeling have enabled more efficient feature representation and
forecasting, particularly with the integration of Transformer architectures. Cheng proposed a multivariate
forecasting framework that automates feature extraction and captures long-term dependencies, offering
insights valuable for adapting pretrained models to sequential text generation tasks in low-resource
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environments [7]. Complementing this, reinforcement learning (RL) methods have gained traction in
distributed computing. Duan applied TD3-based continuous control for load balancing, demonstrating how
adaptive policy optimization can enhance system performance under resource constraints [8].
Deep probabilistic modeling further expands the toolkit for learning in sparse and noisy data environments.
Dai et al. employed mixture density networks for user behavior anomaly detection, enabling a nuanced
probabilistic representation of complex patterns [9]. In parallel, Lou introduced a capsule network-based
approach tailored for structured data mining, showing how adaptive feature representation contributes to
effective learning in compact neural architectures [10]. These works align closely with LoRA’s goal of
capturing essential task-specific information using minimal model updates.
Decision-making in distributed systems also benefits from graph-structured policy design. Wang proposed a
multi-agent reinforcement learning framework that incorporates topological awareness for optimized
scheduling [11]. This idea parallels LoRA’s ability to focus learning within structured parameter subspaces,
making adaptation both efficient and context-aware. Additionally, Cui and Liang developed a diffusion-
transformer framework targeting high-dimensional sparse data, emphasizing deep representation learning
under constraints, a challenge frequently encountered in low-resource fine-tuning tasks [12].
Temporal dependencies in sequence modeling continue to be a focal point in modern AI systems. Sheng’s
hybrid LSTM-GRU framework for loan default prediction exemplifies how multiple sequential architectures
can be integrated to better capture data dynamics in sparse scenarios [13]. Such strategies are particularly
relevant when applying LoRA to tasks like summarization, where context length and temporal consistency
are essential.
Beyond recurrent architectures, reinforcement learning remains a powerful tool for controlling model
complexity and optimizing computational efficiency. Liu’s proposal of reinforcement learning-controlled
subspace ensemble sampling enables more flexible data selection and learning, contributing to model
robustness in uncertain environments [14]. Similarly, Ren et al. introduced a trust-constrained policy learning
mechanism for distributed traffic scheduling, which emphasizes decentralized adaptability-an important
consideration for scalable LoRA-based systems [15].
Wang et al. explored A3C reinforcement learning in microservice scheduling, where multi-task learning and
policy updating can enhance inference quality without significantly increasing resource demands [16]. This
aligns with LoRA’s low-rank framework, which seeks to preserve performance by localizing updates to
selective model layers. Further support comes from Xing’s sequential recommendation model, which
integrates time-awareness and convolutional user modeling to encode temporal behavior using efficient
structures [17].
Wang and colleagues provided a deeper theoretical re-examination of LoRA itself, proposing a smarter
adaptation strategy with reduced redundancy and improved efficiency, offering a valuable advancement in
scalable fine-tuning [18]. Addressing data imbalance is also crucial in low-resource adaptation. Lou proposed
a probabilistic graphical model combined with variational inference, enabling more balanced training under
skewed label distributions [19]. Complementary to this, Wang developed a Markov network classifier with
adaptive weighting to mitigate the impact of underrepresented classes during learning [20].
The utility of LoRA and related adaptation strategies extends into multimodal and financial prediction
contexts. Liu’s multimodal factor models, designed for stock forecasting, leverage cross-source information
to improve generalization-a concept analogous to cross-domain LoRA adaptation [21]. Deng’s hybrid
approach combining association rules with LSTM for network congestion prediction further supports the role
of structured and temporal modeling in real-time systems [22]. Finally, Liu et al. tackled market turbulence
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and risk control using improved A3C reinforcement learning, reinforcing the relevance of adaptive policy
design in dynamically changing environments, which is equally applicable to optimizing LoRA-based
inference [23].

3. Methodology: LoRA-Based Low-Rank Parameter Adaptation
In low-resource scenarios, efficient fine-tuning methods need to minimize computational overhead while
ensuring model adaptability[24]. LoRA (Low-Rank Adaptation) achieves efficient parameter fine-tuning by
introducing low-rank matrices in the key layers of the pre-trained model. Its model architecture is shown in
Figure 1.

Figure 1. Lora Architecture

Assume that the weight matrix of the original pre-trained model is inout ddRW 0 . The core idea of LoRA is to
introduce a trainable low-rank update matrix W to approximate parameter changes without modifying the
original weights, that is:

WWW  0 , ABW 

Among them, rdoutRA  , indrRB  , and ),min( inout ddr  , by limiting the size of R, LoRA is able to
significantly reduce the amount of parameters updated during training while maintaining high expressiveness.
In addition, LoRA training only involves the optimization of A and B, while 0W remains frozen, which
greatly reduces the computing resources and storage requirements required for fine-tuning.
During the optimization process, LoRA follows the standard gradient descent optimization rule, with the goal
of minimizing the task-specific loss function L . The output of the fine-tuned model is defined as

);( 0 WWxf  , and its gradient update only acts on A and B, that is:
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Due to the low rank of A and B, this optimization method has much lower computational complexity than
full parameter fine-tuning, allowing low-resource devices to efficiently perform gradient updates. In addition,
due to the form of parameter decomposition, LoRA can reuse the same 0W but learn different A, B
combinations in multi-task fine-tuning, further reducing storage requirements and improving model
scalability.
In the inference phase, the trained low-rank matrices A and B can be directly merged back into the original
weights, i.e., ABWW  0 , without affecting the inference efficiency of the model. Compared with the full
parameter fine-tuning method, LoRA avoids a substantial increase in video memory usage, so that an effect
close to full parameter fine-tuning can be achieved with limited computing resources. At the same time,
LoRA's low-rank structure allows the model to share basic weights between different tasks and only stores
the fine-tuned adaptation matrix. This feature is particularly important for devices with limited storage.
Therefore, LoRA not only greatly reduces the computing cost in the training phase, but also ensures high
efficiency in the inference phase, providing a practical solution for deep learning models in low-resource
environments[25].

4. Experimental Evaluation: Data Efficiency and Performance Analysis
This study uses the XSum (Extreme Summarization) dataset for experiments. This dataset is widely used in
text summarization tasks and has high-quality annotations and clear semantic structures. XSum consists of
British Broadcasting Corporation (BBC) news articles, each of which is accompanied by a single-sentence
summary with an average length of about 23 words. The characteristic of this dataset is that its summaries are
highly abstract rather than simply extracting the original sentences, so it requires a high generation ability of
the model. In a low-resource environment, efficient fine-tuning of such data can verify the adaptability and
effectiveness of the LoRA method in text generation tasks.
The XSum dataset contains 204,045 news articles, and the data is divided into a training set (204,045 articles),
a validation set (11,332 articles), and a test set (11,334 articles), ensuring the stability and generalization
ability of the experiment. During the experiment, only the subset of data required for fine-tuning was trained
to simulate low-resource scenarios. For example, this study only uses 1% to 10% of the training data to
evaluate the performance of LoRA under data-constrained conditions. At the same time, since the summaries
of XSum usually contain highly compressed information, the difference in the quality of the summaries
between the fine-tuning methods can be clearly measured by comparing the output results of the full
parameter fine-tuning and LoRA fine-tuning models.
In terms of data preprocessing, all texts are standardized, including the removal of special characters,
punctuation normalization, and filtering of low-frequency words. In addition, in order to ensure the rationality
of low-resource scenarios, the experiment adopts the method of Few-shot Learning to train the low-rank
matrix adapted by LoRA under different data amounts to observe its impact on model performance. The
experimental evaluation mainly uses ROUGE (Recall-Oriented Understudy for Gisting Evaluation) as the
automatic evaluation indicator, among which ROUGE-1, ROUGE-2 and ROUGE-L are used to measure the
effectiveness of the LoRA method. This dataset and experimental design can fully verify the feasibility of
LoRA in low-resource environments and provide an experimental basis for further optimization of low-rank
adaptation methods in the future.
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First, the fine-tuning effect evaluation of LoRA under different data scales is given, and the experimental
results are shown in Table 1.

Table 1: Experimental results

Data ratio (%) Method ROUGE-1 ROUGE-2 ROUGE-L

1% Full parameter
fine-tuning

28.5 8.2 25.3

1% LoRA fine-tuning 27.8 7.9 24.8

5% Full parameter
fine-tuning

35.2 12.1 30.5

5% LoRA fine-tuning 34.6 11.7 29.9

10% Full parameter
fine-tuning

40.3 15.5 35.7

10% LoRA fine-tuning 39.8 15.0 35.2

100% Full parameter
fine-tuning

45.9 18.8 41.4

100% LoRA fine-tuning 45.1 18.3 40.9

The experimental results show that the performance gap between the LoRA fine-tuning method and the full
parameter fine-tuning method is small under different data ratios, especially at 1% and 5% data scale, LoRA
can still achieve ROUGE scores close to those of full parameter fine-tuning. For example, at 1% data scale,
the ROUGE-1/ROUGE-2/ROUGE-L of full parameter fine-tuning are 28.5/8.2/25.3 respectively, while the
scores of LoRA fine-tuning are 27.8/7.9/24.8, with only a slight decrease, indicating that LoRA can still
effectively adapt the model even in extremely low resource conditions. In addition, at 5% data scale, LoRA
still maintains similar summary quality, and the ROUGE index decreases by no more than 0.6 compared with
the full parameter fine-tuning method, further verifying the adaptability of LoRA in low data volume
environments.
When the data scale increases to 10% and above, the fine-tuning performance of LoRA remains stable, but
the gap in ROUGE indicators gradually widens compared to full parameter fine-tuning. For example, at
100% data scale, the ROUGE-1 score of full parameter fine-tuning reaches 45.9, while LoRA is only 45.1,
and ROUGE-2 and ROUGE-L also show a similar downward trend. This shows that under sufficient data
conditions, full parameter fine-tuning can more fully adjust the model weights to achieve better performance.
Despite this, the results of LoRA are still close to full parameter fine-tuning, indicating that it can provide a
lightweight optimization solution on large-scale datasets while avoiding the problem of computing resource
consumption caused by full parameter fine-tuning.
Overall, LoRA has a significant fine-tuning advantage in low-resource scenarios, especially when the amount
of data is small, its fine-tuning effect is almost equivalent to the full parameter method, and it can greatly
reduce the training and storage costs. However, when the amount of data is large, full parameter fine-tuning
can still bring higher text summary quality. Therefore, in practical applications, the appropriate fine-tuning
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strategy can be selected according to the data scale and computing resources: when data and computing
resources are limited, LoRA is an efficient and feasible choice, while when resources are sufficient, full
parameter fine-tuning can bring better performance improvement.
Secondly, this paper explores the impact of different r values on model performance, and the experimental
results are shown in Table 2.

Table 2: The impact of different r values on model performance

r Data ratio (%) ROUGE-1 ROUGE-2 ROUGE-L
4 10% 38.2 14.3 33.5
8 10% 39.1 14.8 34.2
16 10% 39.8 15.0 35.2
32 10% 40.0 15.2 35.4
4 100% 43.5 17.5 39.1
8 100% 44.2 18.0 39.8
16 100% 45.1 18.3 40.9
32 100% 45.3 18.4 41.1

The experimental results show that the rank value r of LoRA's low-rank matrix has a certain impact on the
model performance, especially under a smaller data scale (10% data ratio), the ROUGE index of different r
values ​ ​ changes significantly. When r increases from 4 to 32, the ROUGE-1 index increases from 38.2 to
40.0, ROUGE-2 increases from 14.3 to 15.2, and ROUGE-L increases from 33.5 to 35.4, indicating that
appropriately increasing the r value helps the model capture richer features and improve the quality of the
summary. However, as the r value increases, the performance improvement gradually decreases, which
means that there is an optimal range for LoRA's low-rank approximation. After exceeding a certain r value,
the additional computational overhead does not bring significant performance improvement.
On the full data set (100% data ratio), the overall ROUGE index is significantly improved compared with the
10% data scale, and as r increases, the ROUGE index still increases. For example, when r increases from 4 to
32, ROUGE-1 increases from 43.5 to 45.3, but the increase (1.8) is more moderate than the increase (1.8)
when the data is 10%, indicating that with sufficient data, the low-rank structure of LoRA can effectively
capture key information, and further increasing r can only bring marginal benefits. Therefore, in practical
applications, the appropriate r value should be selected according to the data scale and computing resources.
For example, r=16 may be a better compromise point, which can maintain a high summary quality without
increasing too much computing burden.

5. Conclusion and Future Work
This study proposes a Mask2Former semantic segmentation algThis study explores the efficient fine-tuning
method of the LoRA algorithm in a low-resource environment, and verifies its adaptability under different
data scales and low-rank matrix settings through experiments. The experimental results show that LoRA can
still maintain performance close to full parameter fine-tuning under extremely low data volume and
computing resource constraints, especially when the data ratio is 10% or less, its ROUGE index only
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decreases slightly, indicating that this method has good application value in low-resource scenarios. At the
same time, LoRA significantly reduces the computational overhead by introducing low-rank matrices to
optimize weight updates, providing an effective solution for lightweight adaptation of large-scale pre-trained
models.When analyzing the rank value r of the low-rank matrix, the experimental results show that
appropriately increasing r can improve model performance, but when r exceeds a certain threshold, the
performance gain gradually stabilizes. This shows that LoRA achieves efficient feature learning through low-
rank approximation, but too large r values ​ ​ may lead to increased computational overhead, and the
performance improvement is limited. Therefore, in practical applications, the appropriate r value should be
selected according to the computing resources and data scale of the specific task to strike a balance between
computational efficiency and model performance.In general, LoRA, as a parameter-efficient fine-tuning
method, has shown strong adaptability and generalization capabilities in low-resource environments.
Compared with full parameter fine-tuning, it can reduce computing resource consumption while ensuring
model performance, making large-scale pre-trained models more widely used in computing-constrained
scenarios. Future research can further explore LoRA's optimization strategies for different tasks and
architectures, such as combining other parameter-efficient fine-tuning methods or adaptively adjusting the r
value to further improve its practicality and generalization capabilities in low-resource environments.
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