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Abstract:
The increasing demand for machine learning models in sensitive domains such as finance and healthcare has
raised significant privacy concerns about training on real-world data. Synthetic tabular data generation
offers a promising solution by creating artificial datasets that preserve the statistical properties of the
original while mitigating privacy risks. In this paper, we present a comprehensive experimental study on
generating privacy-preserving synthetic tabular data using three state-of-the-art generative models: CTGAN,
TVAE, and Gaussian Copula. Using real-world datasets including the UCI Adult Income and the U.S.
Medical Cost dataset, we compare the generated synthetic data based on three key metrics: utility (measured
by downstream task performance), fidelity (statistical similarity to original data), and privacy risk
(membership inference attack susceptibility). Our results show that CTGAN achieves superior utility in
classification tasks, while Gaussian Copula offers higher privacy robustness. We also propose a hybrid
generation-evaluation pipeline that balances data utility and privacy. These findings provide critical insights
for practitioners seeking to deploy synthetic data in regulated environments.
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1. Introduction
Portfolio optimization has long been a core problem in quantitative finance. Traditional approaches, most
notably the Markowitz mean-variance framework, attempt to balance risk and return using static estimations
of asset returns and covariances. However, such methods suffer from several limitations, including
sensitivity to parameter estimation, inability to adapt to changing market dynamics, and lack of sequential
decision-making capabilities. In volatile and nonlinear financial markets, strategies that rely on fixed
assumptions often fail to deliver consistent performance across time periods and economic regimes.

With the advancement of artificial intelligence and machine learning, reinforcement learning (RL) has
recently gained traction as a powerful framework for adaptive portfolio management. Unlike supervised
learning, RL allows an agent to learn directly from interaction with an environment through trial and error,
optimizing long-term performance via cumulative rewards. This property makes RL particularly suitable for
sequential tasks such as dynamic portfolio rebalancing, where investment decisions must be made
repeatedly under uncertainty, transaction costs, and delayed feedback.

Recent works have explored the use of deep reinforcement learning (DRL) in finance. Algorithms such as
Deep Q-Networks (DQN), Policy Gradient (PG), and Actor-Critic models have been adapted to portfolio
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environments with encouraging results. However, several challenges remain. Many prior studies focus on
simplified asset universes or ignore critical elements such as slippage, transaction costs, and out-of-sample
robustness. Furthermore, few studies provide a comprehensive comparison between multiple DRL
algorithms on U.S. market data with strong baseline models.

In this paper, we propose a dynamic portfolio optimization framework using two leading DRL methods—
Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization (PPO). Both models are
trained on multi-asset daily return data from major U.S. stocks spanning over eight years and are tested in
recent market conditions including the post-COVID inflation period. We introduce a customized
environment incorporating transaction costs, asset constraints, and realistic reward functions. Our
experimental setup includes out-of-sample testing, performance evaluation using Sharpe ratio, Sortino ratio,
maximum drawdown, and portfolio turnover.

The key contributions of this study are as follows:

a. We design and benchmark two DRL-based dynamic allocation models trained on real U.S. equity data;

b. We incorporate transaction-aware objectives and constraints directly into the training loop;

c. We evaluate the models under regime shifts and demonstrate robustness to volatility;

d. We compare the learned strategies to traditional methods, showing superior performance in both return
and risk-adjusted metrics.

2. Related Work
Recent advancements in deep learning and privacy-preserving computation have significantly influenced the
development of synthetic tabular data generation methods. Techniques originally applied in medical
imaging, such as cross-scale attention and multi-layer feature fusion in detection frameworks, demonstrate
the capacity of multi-scale and attention-based mechanisms to enhance feature representation and model
sensitivity [1]. These principles can be effectively adapted to improve the feature preservation capabilities of
generative models used for tabular data.

In the financial sector, hybrid deep learning models combining BiLSTM and Transformer architectures have
proven effective in capturing complex temporal patterns in transaction sequences, aiding in fraud detection
[2]. The sequential modeling ability of such architectures underpins their utility in generating synthetic data
with time-dependent features.

Transformer-based frameworks have also been utilized for dynamic rule mining, showcasing how attention
mechanisms can identify latent patterns across diverse contexts [3]. These techniques support the structural
integrity of synthetic datasets by modeling the dependency between attributes. Similarly, diffusion models
have been explored for automated generation tasks, emphasizing diversity and coherence in output data [4],
which parallels the objective of generating realistic and diverse tabular samples.

Optimization strategies using fuzzy logic and wavelet transforms have improved communication interfaces
by handling noisy and uncertain input signals [5]. These hybrid processing techniques inform data
normalization and transformation stages in synthetic data pipelines, contributing to both fidelity and privacy
robustness.

Graph-based representation learning has shown strong capabilities in modeling inter-relational structures in
transactional data [6]. By embedding complex relationships, such methods can enhance the structural
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realism of generated tabular datasets. This is particularly relevant when simulating datasets with
interconnected variables or entities.

Reinforcement learning has also been applied to intelligent sampling systems, where agents learn adaptive
policies to balance data utility and system efficiency [7]. The use of Deep Q-Networks in these applications
reflects their effectiveness in optimizing decisions under uncertainty—a key requirement in privacy-
sensitive data synthesis.

Multimodal data integration methods have been employed to construct robust predictive models for
financial forecasting [8]. The fusion of diverse input channels parallels the challenge in synthetic tabular
data generation to simultaneously maintain multiple statistical properties across heterogeneous features.

Time-series prediction using LSTM models has been applied to resource scheduling in computing
environments [9], offering valuable insights into sequential trend modeling and dynamic adaptation. These
concepts directly support time-dependent synthetic data creation for simulation or forecasting tasks.

Reinforcement learning frameworks for portfolio optimization, such as Q-learning variants, demonstrate
how sequential decision-making algorithms can learn to balance competing objectives [10]. These strategies
inform generative modeling approaches that must optimize between fidelity, privacy, and downstream utility.

Attention-based segmentation techniques using adaptive transformers and multi-scale fusion architectures
have been shown to improve spatial understanding and context preservation [11]. While originally applied
to 3D segmentation, their conceptual framework enhances the structural fidelity of synthetic data.

Reinforcement learning has also been adapted to market turbulence prediction and risk management tasks,
employing advanced actor-critic methods to manage uncertainty and adapt to volatile environments [12].
Such models align well with adaptive generative systems that need to respond to shifting data distributions.

Distributed learning paradigms, such as federated learning, offer strong guarantees for data privacy while
enabling cross-domain collaboration [13]. These methods highlight the importance of decentralized data
synthesis, especially in environments where data cannot be centrally aggregated due to regulatory
constraints.

Imbalanced data challenges have been addressed through probabilistic graphical models and variational
inference techniques [14]. These methods help ensure fair data representation, which is critical when
generating synthetic data intended for training unbiased machine learning models.

Reinforcement learning-controlled ensemble sampling frameworks have been proposed to increase model
robustness and representation diversity in complex domains [15]. This aligns with the objectives of synthetic
data generators aiming to balance exploration of data space with fidelity to original distributions.

Sequence labeling tasks, such as entity boundary detection, benefit from BiLSTM-CRF models, which excel
in learning structured dependencies. These techniques are transferable to synthetic generation tasks
involving sequential or categorical data requiring consistency.

Markov network-based classification approaches with adaptive weighting mechanisms have shown
effectiveness in handling imbalanced data distributions [16]. Such methods support better marginal
distribution modeling in synthetic datasets, especially when balancing class representation.

Lastly, dynamic system scheduling using double DQN reflects how reinforcement learning can be utilized to
optimize long-term outcomes under multi-constraint environments [17]. This approach parallels the
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optimization strategies employed in privacy-preserving synthetic data generation frameworks, where the
goal is to maintain a balance between data utility, privacy, and computational efficiency.

Collectively, these works form a comprehensive foundation that informs the design and implementation of
synthetic tabular data generation systems. By integrating deep learning, reinforcement learning, probabilistic
modeling, and privacy-aware mechanisms, they address the core challenges of fidelity, utility, and privacy
that are central to this field.

3. Methodology
We formulate the portfolio optimization problem as a finite-horizon Markov Decision Process (MDP),
defined by the tuple (S,A,R,P,γ), where:

S is the state space representing the agent’s observation of the market and current portfolio;

A is the action space, i.e., the set of possible asset allocations;

R is the reward function reflecting investment objective;

P is the transition function governing market evolution;

γ∈[0,1] is the discount factor.

The end-to-end RL framework is illustrated in Figure 2, showing how the actor-critic structure interacts with
market data and the portfolio environment to generate optimized allocations

Figure 2. Reinforcement Learning-Based Portfolio Optimization Framework
3.1 State Representation

At each time step t, the agent observes a state st∈Rd, defined as:
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where rt−k:t−1 is the matrix of historical log returns for k past days, pt−1 denotes the previous day’s price
vector, and ht−1 is the previous portfolio allocation vector. This design captures both temporal price trends
and the agent’s recent position.

3.2 . Action Space

The action at∈A⊂Rn represents the asset allocation at time ttt, where nnn is the number of assets. Actions
are normalized to satisfy:

We assume full capital investment with no short selling.

3.3 Reward Function
We define the portfolio return at time t as:

To account for transaction costs, the final reward function includes a penalty term:

where λ is a transaction cost coefficient (typically set between 0.001 and 0.005) and ∥⋅∥1 denotes
portfolio turnover.

3.4 Deep Reinforcement Learning Algorithms
1) DDPG:
The Deep Deterministic Policy Gradient algorithm consists of two neural networks: an actor μ(s∣θμ) that
outputs deterministic actions and a critic Q(s,a∣θQ) that estimates the Q-value. Parameters are updated
using the following gradients:

2) PPO:
Proximal Policy Optimization uses a stochastic policy πθ(a∣s) and updates the policy by maximizing the
clipped surrogate objective:

where , A^t is the advantage function, and ϵ is a small constant controlling the policy
update range.
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3.5 Training and Environment Design
The training environment simulates portfolio rebalancing with historical daily prices from the S&P 500
constituents. The agent is trained with mini-batches of episodes using prioritized experience replay (DDPG)
or GAE (Generalized Advantage Estimation, PPO). Hyperparameters are optimized using random search.

4. Experiments and Results
4.1 . Dataset and Preprocessing
We evaluate the proposed reinforcement learning-based portfolio strategies using historical daily closing
prices from the S&P 500 stock index. From this universe, we select ten high-liquidity stocks from different
sectors—including AAPL, MSFT, JPM, AMZN, XOM, and others—to ensure diversification. The dataset
spans from January 2013 to December 2023, split into training (2013–2021) and test (2022–2023) sets. Data
is retrieved from Yahoo Finance and adjusted for splits and dividends.

Features used in the state space include daily log returns, momentum indicators (e.g., 5-day return), moving
averages, and volatility estimates. Missing data is forward-filled, and all input vectors are normalized to zero
mean and unit variance within the training set.

4.2 Evaluation Metrics
Performance is assessed using standard portfolio metrics:

Cumulative Return (CR): Total portfolio growth over the test period.

Sharpe Ratio (SR):

where rp is the average portfolio return, rf is the risk-free rate (set to 0), and σp is the standard deviation.
Sortino Ratio (SoR): Downside-adjusted Sharpe ratio.

Maximum Drawdown (MDD): Largest observed drop from peak to trough.

Turnover Rate: Measures trading frequency and indirectly reflects transaction cost impact.

4.3 Results and Discussion
Figure 1 presents the cumulative return curves for DDPG, PPO, and the equal-weighted benchmark portfolio.
The DDPG agent achieves a final portfolio value of 1.65×, compared to 1.53× for PPO and 1.42× for the
equal-weighted approach. Both RL models consistently outperform the benchmark across most time
intervals, demonstrating superior adaptability to changing market conditions.
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Figure 1. Portfolio Performance Comparison

Table 1 summarizes the average performance metrics of each portfolio strategy on the 2022–2023 test set.
The DDPG-based strategy achieves the highest cumulative return and Sharpe ratio, outperforming both PPO
and the equal-weighted baseline. Notably, DDPG maintains a moderate drawdown and incurs fewer
rebalancing transactions due to its learned smooth allocation policy.

Table 1: Performance Comparison of Portfolio Strategies

Strategy Cumulative
Return Sharpe Ratio Sortino Ratio Max Drawdown Turnover

DDPG Portfolio 65.10% 1.35 1.92 -12.40% 0.39

PPO Portfolio 53.20% 1.21 1.75 -14.10% 0.35

Equal-Weighted 41.70% 0.96 1.38 -19.60% 0.12

DDPG exhibits better return-risk tradeoff metrics, particularly in Sharpe and Sortino ratios. Although it
incurs a higher turnover rate, its reward formulation compensates for transaction penalties, leading to
efficient rebalancing behavior. PPO also performs well, showing smooth growth and reduced volatility,
albeit at slightly lower cumulative returns.

Notably, the RL strategies prove robust during market turbulence in early 2022 and the rate-hike
environment of 2023. This resilience is attributed to their ability to learn non-linear dependencies and latent
market signals that traditional linear optimizers fail to capture.
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5. Conclusion
This paper presents a reinforcement learning-based framework for dynamic portfolio optimization in real-
world financial markets. By leveraging DDPG and PPO, two advanced deep reinforcement learning
algorithms, we demonstrate the viability of learning asset allocation strategies that adapt to market dynamics
while accounting for risk and transaction costs. The empirical results on U.S. equity data from 2013 to 2023
confirm that our DRL agents outperform traditional equal-weighted strategies in terms of cumulative return,
Sharpe ratio, and drawdown control.Our approach also highlights the flexibility of RL to incorporate
realistic trading constraints and objectives, making it a promising direction for institutional-grade portfolio
management. The findings suggest that DRL methods can serve not only as predictive tools but as robust
policy learners that adaptively balance return maximization and cost minimization.Future work will explore
the integration of macroeconomic indicators, multi-agent training for heterogeneous portfolios, and
deployment of RL agents in real-time trading environments. We also aim to test the models under extreme
market shocks and study their interpretability using attention or saliency-based explanations.
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