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Abstract:

This study proposes an adaptive multi-scale representation learning method for system metric prediction to
address the dynamic characteristics and non-stationary distributions of multi-dimensional metric sequences
in complex systems. The method extracts temporal features at different time granularities through a multi-
scale convolutional feature decomposition module, capturing both short-term fluctuations and long-term
trends in system state changes. An adaptive feature fusion mechanism is introduced to dynamically weight
multi-scale features and enforce consistency across scales, thereby enhancing the model's capability to
represent complex time-varying patterns. Structurally, the model integrates hierarchical normalization and
gated update units to improve the stability of feature flow and the continuity of temporal dependencies,
avoiding prediction degradation under high-frequency disturbances and distribution shifts. In addition, a
residual propagation-based dynamic feature transformation layer is constructed to jointly model local
information and global semantics, further improving robustness and generalization in multi-dimensional
signal interactions. Experimental results show that the proposed method achieves lower MSE, MAE, MAPE,
and RMSE values than mainstream models such as Autoformer, EDFormer, and TimesNet on benchmark
system metric datasets, confirming its superiority in multi-scale feature reconstruction and dynamic
temporal modeling. This research provides an efficient and scalable modeling framework for system
performance prediction, intelligent operations, and multi-dimensional time-series analysis, enabling accurate
forecasting and structured representation of non-stationary sequences in complex system environments.
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1. Introduction

In modern computing environments, the dynamic variation of system metrics has become a key indicator for
characterizing the operational state of cloud computing, distributed systems, and microservice architectures.
With the continuous expansion of application scale and the increasing complexity of underlying
infrastructures, system performance metrics exhibit high dimensionality, strong correlations, and non-
stationary characteristics. Variations across different temporal granularities often intertwine periodic
fluctuations, sudden anomalies, and long-term drifts. Traditional statistical models typically assume stable
data distributions and independent feature spaces, but such assumptions rarely hold in real-world systems. As
a result, their ability to capture complex dynamic patterns is limited. Effectively modeling and accurately
predicting time-varying features in multi-dimensional and heterogeneous metric environments has become a
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crucial scientific challenge for system performance management, anomaly warning, and resource
scheduling[1,2].

During system operation, intricate hierarchical dependencies and interactions often exist among metrics. For
example, fluctuations in CPU utilization may be influenced by network latency, disk I/O, or service load
migration. These cross-dimensional correlations exhibit distinct multi-scale temporal characteristics. Short-
term perturbations may rapidly propagate and form localized anomalies, while long-term accumulative trends
may imply system degradation or resource imbalance. Modeling at a single temporal scale fails to capture
both local fluctuations and global trends, thereby constraining model generalization across multi-stage
dynamic processes. Consequently, constructing a representation learning framework capable of adaptively
learning system metric distributions across multiple temporal scales has become a key direction for achieving
high-precision prediction and robust modeling|[3].

However, applying multi-scale representation learning to system metric prediction remains challenging. First,
the multi-dimensional and nonlinear coupling of metric sequences leads to significant feature differences
across temporal scales. Designing a model that preserves local sensitivity while extracting global steady-state
representations is a core difficulty[4]. Second, the dynamic nature of system environments causes metric
distributions to drift over time, rendering static feature extraction ineffective. Adaptive mechanisms are
needed to adjust feature weights and interactions across different scales in real time. Third, hierarchical
dependencies among metrics often follow implicit topological structures that cannot be fully captured
through conventional sequential modeling. Therefore, structural constraints and contextual enhancement
strategies must be integrated into feature representation to improve interpretability and stability in complex
system behavior modeling[5].

In practical cloud and backend systems, prediction accuracy directly determines the level of proactive
management and fault prevention. Accurate metric forecasting not only enables early detection of potential
bottlenecks and anomalies but also provides quantitative support for resource allocation, task scheduling, and
service orchestration. This facilitates an intelligent shift from passive response to proactive regulation. The
introduction of multi-scale representation learning allows models to simultaneously capture fast fluctuations
and slow variations across temporal scales, thereby enhancing sensitivity and adaptability to non-stationary
processes. Particularly in multi-tenant or high-load environments, adaptive models can dynamically adjust
structures based on real-time metric feedback, effectively mitigating performance degradation caused by
model rigidity[6].

In summary, research on adaptive multi-scale representation learning for system metric prediction holds
significant theoretical and practical value. Theoretically, it advances the representational framework of time-
series modeling under non-stationary and multi-scale conditions, promoting developments in hierarchical
feature modeling, adaptive weight allocation, and dynamic context integration. Practically, it offers efficient
and reliable predictive support for cloud computing, intelligent operations, and automated resource
management. By achieving adaptive optimization of feature representations through joint modeling across
multiple temporal scales, cross-metric dimensions, and dynamic contexts, this research provides a solid
technical foundation for the long-term stability and intelligent orchestration of complex systems[7].

2. Proposed Approach

This study introduces an adaptive multi-scale representation learning framework designed to enhance the
modeling of non-stationary features, cross-temporal dependencies, and multi-dimensional interactions in
system metric prediction tasks. The proposed method achieves efficient coordination between short-term
local fluctuations and long-term global trends through multi-scale encoding, dynamic weight fusion, and
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adaptive context updating mechanisms. The overall model consists of three core components: multi-scale

feature decomposition, adaptive scale fusion, and temporal context reconstruction. Specifically, the multi-

scale decomposition module extracts time-varying features using temporal convolutions and attention

mechanisms at different scales; the fusion module automatically allocates scale weights based on the current

system state; and the context reconstruction module generates continuously differentiable predictive

representations via temporal dependency propagation. This framework maintains stable representational

capability and adaptability in complex and dynamic system metric environments. The model architecture is
shown in Figure 1.
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Figure 1. Overall Architecture of the Proposed Adaptive Multi-Scale Representation Learning Framework

First, to characterize the multi-scale evolution characteristics of system indicators, the original time series is
recorded as X = {xl,xz,..., X; }, and its representation at different scales can be expressed as:

H = Conv, (X)+ Attn (X) (1)
Here, Convk () represents local temporal feature extraction at a convolution kernel size of &, , and

Attn (-) represents the scale-aware attention mechanism used to model long-term dependencies. Through

multi-scale operations, feature sequences {H,,H,,...,H} at different temporal granularities can be obtained.
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Secondly, to achieve adaptive fusion of multi-scale features, a learnable weight distribution function a, is

introduced to dynamically adjust the importance of each scale based on the current system state and historical
dependencies. The fusion representation is defined as:

S
Z=> a,-Norm(H) )
s=1
Here, Norm(:) represents the layer normalization operation to balance the magnitude differences of
features at different scales. The weight o is obtained through soft normalization constraints to satisfy

Zil a, =1, ensuring the stability and interpretability of the fusion.

After multi-scale fusion, to enhance the model's adaptive modeling of temporal context, a temporal
dependency propagation mechanism is introduced to model the state transition between time steps as follows:

C. =GRU(Z,,C,.,)+Gate(Z,) 3)

Here, GRU(-) represents a gated recurrent unit used to capture temporal dependencies, and Gate(:) is a
gated adjustment term used to control the flow of information between the current input features and the
historical context. Through this mechanism, the model can adaptively adjust the dependency strength when
faced with non-stationary time series, thereby achieving a stable time series representation.

After obtaining the context-enhanced feature representation C,, to further improve the model's sensitivity to
dynamic changes in features, this paper introduces a structured adaptive transformation function to map the
features to a unified representation space:

F,=Re LUW,C,+b,)+A-Drop(C,) (4)

Here, ReLU(:) is a nonlinear activation function, Drop(-) is a random dropout operation to prevent

feature overfitting, and A is an adjustable parameter to control the regularization strength. This structure
enhances the expressiveness of the model while ensuring continuity and stability between features at different
time steps.

Finally, to achieve the predicted output of system indicators, a regression mapping function is introduced to
map the high-dimensional representation after multi-scale fusion to the indicator space:

$, = READOUT(F.)=W.F, +b, (5)

Among them, READOUT(-) represents the linear readout layer, which is used to generate the predicted
value P, of the indicator at the next moment. Through an end-to-end optimization process, the model can

adaptively adjust the weight distribution between multi-scale features to achieve efficient mapping from the
original sequence to the indicator prediction.

Overall, the proposed method performs structured modeling of system metrics based on multi-scale temporal
features through adaptive fusion and dynamic context propagation. This mechanism not only captures
complex dependencies across multiple temporal granularities but also adjusts feature representations
according to changing operational states. It enables robust prediction of non-stationary system dynamics and
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long-term trend modeling, providing theoretical and methodological support for system performance
optimization and intelligent operations management.

3. Performance Evaluation
3.1 Dataset

This study employs the Cloud Workload Trace Dataset as the data foundation for method validation. The
dataset collects multi-dimensional performance metrics from servers and containers in large-scale cloud
computing environments. It includes key features such as CPU utilization, memory usage, disk 1/O
throughput, network traffic, and latency. The metric data are continuously sampled in time-series form,
accurately reflecting the dynamic variations of system workloads. The dataset contains diverse workload
types and service deployment configurations, providing rich structural information for system performance
prediction and time-series modeling.

The design of this dataset highlights its multi-dimensional coupling and non-stationary characteristics,
which align well with the requirements of multi-scale temporal modeling in this study. The indicators across
different dimensions show strong temporal correlations and complex cross-metric dependencies, such as the
interaction between CPU and I/O operations and the dynamic relationship between memory usage and
network throughput. These characteristics make the dataset an ideal benchmark for validating the proposed
adaptive multi-scale representation learning framework. It supports an in-depth analysis of the model's
robustness and adaptability when dealing with multi-scale dynamic patterns and time-varying feature
distributions.

In addition, the dataset provides high-frequency temporal sampling and detailed label annotations, enabling
joint modeling of short-term fluctuations and long-term trends. Conducting system metric prediction tasks
on this dataset allows a comprehensive evaluation of the proposed method's modeling capability and
generalization performance under complex distribution shifts, multi-dimensional dependencies, and
dynamic contextual conditions. This experimental setup offers solid theoretical and data support for the
model's practical feasibility in real cloud environments.

3.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Tablel: Comparative experimental results

Method MSE | MAE | | MAPE (%) | RMSE |
Autoformer|[8] 0.0253 0.129 4.120 0.1591
EDFormer|9] 0.0227 0.117 3.760 0.1507
TimesNet[10] 0.0235 0.120 3.910 0.1533

Ours 0.0198 0.105 3.280 0.1407

From the overall trend, all four models show strong temporal fitting ability in system metric prediction tasks
but still exhibit varying degrees of error fluctuation. The traditional Autoformer relies on a trend and residual-
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based time series decomposition structure, which effectively captures long-term trend variations. However,
its adaptability is limited under high-frequency disturbances and non-stationary distributions, resulting in
relatively high MSE and RMSE values. This indicates a lag in modeling dynamic changes in complex system
metrics. Its modeling of multi-dimensional dependencies remains rigid, making it difficult to handle
heterogeneous feature interactions across different scales. As a result, its performance in MAE and MAPE is
slightly inferior.

EDFormer integrates decomposition and embedded structural modeling, achieving significant improvements
in predicting stable temporal segments compared to Autoformer. Both MSE and MAE decrease notably,
indicating that the model performs more stably when capturing short-term perturbations and medium-term
variations. However, EDFormer still relies on fixed-scale embedding windows. The lack of adaptive
adjustment in its cross-scale interaction and weight allocation mechanism leads to redundant information and
feature drift during scale alignment. Although EDFormer shows improvement over Autoformer in MAPE, it
still fails to achieve full global consistency under complex system load fluctuations.

TimesNet introduces a two-dimensional periodic mapping structure for multi-scale modeling, enabling it to
capture both intra-period and cross-period variations. It achieves more balanced performance in overall error
convergence, with relatively stable RMSE values, suggesting its advantage in medium-complexity time series
modeling tasks. Nevertheless, since its temporal encoding and feature mapping structures are static, the
flexibility of feature fusion is limited when system metrics exhibit nonlinear transitions or abrupt changes at
different temporal granularities. Consequently, the prediction residuals remain high in non-stationary
segments.

In contrast, the proposed adaptive multi-scale representation learning method achieves the best results across
all four evaluation metrics, demonstrating clear advantages in dynamic feature reconstruction and cross-scale
fusion. The method dynamically aggregates multi-scale features through an adaptive weighting mechanism
and enhances joint modeling of long-term trends and short-term fluctuations via a temporal dependency
propagation module. This effectively reduces prediction bias and error propagation. The experimental results
show that the proposed framework achieves higher accuracy and robustness in multi-dimensional, non-
stationary, and highly dynamic system environments. These findings verify the modeling potential and
application value of adaptive multi-scale representation learning in complex system scenarios.

This paper also evaluates the sensitivity of the multi-scale convolution kernel size and dilation rate, and the
experimental results are shown in Figure 2.

From the overall trend, as the convolution kernel size and dilation rate change, the model exhibits clear
nonlinear fluctuations in prediction performance under different scale configurations. Small-scale
convolutions, such as k3-d1, perform stably in capturing local variations, but their limited receptive field fails
to cover long-term trends. As a result, both MSE and RMSE remain relatively high, indicating insufficient
modeling of global features. When the kernel size and dilation rate increase, the model's ability to capture
temporal characteristics gradually improves, and error metrics continuously decrease. This trend
demonstrates the effectiveness of multi-scale structures in modeling complex system metrics.

When the convolution kernel reaches a moderate scale, such as k7-d4, all four metrics achieve their optimal
values. This indicates that at this scale, the modeling of local dynamics and global trends reaches an effective
balance. The feature space forms a synergistic interaction between temporal dependency and scale
decomposition, enabling the model to adaptively extract dominant patterns and suppress noise interference.
This phenomenon validates the core idea of the adaptive multi-scale representation learning framework.
Through multi-scale feature fusion and weight allocation, the model can flexibly capture system behavior at
different temporal granularities, achieving efficient characterization of non-stationary signals.
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Figure 2. Hyperparameter sensitivity analysis of multi-scale convolution kernel size and dilation rate

When the dilation rate continues to increase, such as k11-d4 and k13-d8, model performance slightly declines.
At this stage, the feature sampling interval becomes too large, leading to partial loss or dilution of local
information. Short-term dependencies are harder to preserve, resulting in a slight rise in MAE and MAPE.
This trend suggests that although a wider receptive field enhances global perception, the absence of
appropriate hierarchical constraints and weight calibration weakens the model's responsiveness to fine-
grained variations and disrupts consistency across scales.

Overall, the experimental results show that the proper matching of convolution kernel size and dilation rate is
crucial for system metric prediction. The adaptive multi-scale representation learning method can
dynamically adjust feature weights across receptive fields, balancing local sensitivity and global stability. The
model achieves optimal performance at moderate convolution scales, demonstrating strong structural
adaptability and robustness in multi-scale modeling of non-stationary system signals. These results highlight
the method's superiority in system metric prediction tasks under complex and time-varying environments.

4. Conclusion

This study addresses the challenge of modeling multi-scale temporal dependencies in system metric
prediction by proposing an adaptive multi-scale representation learning method. The approach enables high-
precision prediction and robust modeling in multi-dimensional, non-stationary, and highly dynamic system
environments. Through the organic integration of multi-scale convolutional feature decomposition, adaptive
weight fusion, and temporal dependency propagation mechanisms, the method captures both short-term
fluctuations and long-term trends across different temporal granularities. This effectively handles nonlinearity,
noise interference, and multi-dimensional interactions in metric sequences. Experimental results show that
the proposed model outperforms mainstream baselines on multiple key error metrics, demonstrating its
adaptive capability and strong generalization performance in complex system environments with time-
varying feature distributions.

From a theoretical perspective, the proposed adaptive multi-scale representation learning framework provides
a new direction for time-series modeling. Unlike traditional single-scale or fixed-structure models, this
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method achieves dynamic selection and fusion of multi-scale features, allowing the model to automatically

adjust its feature representation space according to system state changes. This idea not only provides a

scalable theoretical foundation for system metric prediction but also introduces a new research paradigm for

addressing issues such as scale inconsistency and structural drift in multi-dimensional time series. The

interpretability and transferability of its multi-layer architecture offer valuable insights for future model
design and optimization across different application domains.

From an application perspective, the proposed method has significant potential in cloud computing,
distributed systems, microservice architectures, and intelligent operations management. By accurately
modeling and predicting system performance metrics, operation and maintenance systems can enable
proactive resource scheduling, fault warning, and anomaly detection, thereby improving service quality and
system reliability. Moreover, the method is broadly applicable to industrial process monitoring, network
traffic analysis, and data center energy consumption forecasting. Its strong robustness and low parameter
dependency allow the model to maintain stable predictive performance across varying scales and noise levels,
providing a solid technical foundation for intelligent management and automated decision-making in
complex systems.

Future research can be expanded in three directions. First, the proposed framework can be combined with
graph neural networks or attention diffusion mechanisms to enhance the model's ability to capture cross-
dimensional dependencies and topological structures. Second, considering the need for real-time performance
and computational efficiency, lightweight multi-scale modeling strategies can be developed to enable low-
latency, high-throughput online prediction and dynamic updating. Finally, in terms of cross-domain transfer
and self-supervised learning, future work may introduce distribution adaptation and domain alignment
mechanisms, allowing the model to achieve knowledge sharing and generalization across different systems
and tasks. Overall, the proposed adaptive multi-scale representation learning method provides a new
theoretical foundation and practical pathway for intelligent prediction in complex systems, offering
significant academic and application value for advancing adaptive system analysis and intelligent operations.
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