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Abstract:

Human action recognition has become a cornerstone in computer vision, supporting a wide range of
applications such as intelligent surveillance, human–computer interaction, autonomous robotics, and
healthcare monitoring. Traditional convolutional neural networks have demonstrated strong spatial feature
extraction capabilities but are fundamentally limited in capturing long-range temporal dependencies and
complex motion relationships across frames. The introduction of transformer architectures has reshaped
visual recognition by introducing global self-attention mechanisms that model spatial and temporal
dependencies in a unified and data-driven manner. By treating video frames as sequences of spatiotemporal
tokens, transformer-based frameworks have surpassed conventional convolutional approaches in both
flexibility and accuracy. These models enable more effective temporal reasoning, multimodal fusion with
audio and pose information, and zero-shot generalization through large-scale pretraining. This survey
provides a comprehensive overview of transformer-based visual recognition methods for human action
understanding, emphasizing the evolution of key architectures, the integration of self-supervised and
multimodal learning, and the use of large-scale benchmark datasets. Finally, it highlights current challenges
related to efficiency, data dependency, and interpretability, and discusses how future developments may lead
to general-purpose, multimodal, and explainable systems for real-world action understanding.
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1. Introduction

Human action recognition aims to automatically analyze and classify human activities from visual inputs.
Early approaches relied on handcrafted descriptors such as the Histogram of Oriented Gradients (HOG) and
optical flow [1], which were capable of capturing local appearance and motion cues but lacked generalization
in unconstrained environments. The advent of deep learning led to the dominance of convolutional neural
networks (CNNs), including two-stream architectures [2], 3D convolutional models such as C3D [3], and I3D
[4], which jointly modeled appearance and motion by processing video frames directly. Although these
methods achieved significant progress, their reliance on local convolutional operations limited their ability to
model long-term temporal relationships. In dynamic scenes where actions unfold across hundreds of frames,
such as “ standing up after sitting” or “performing a full gymnastics routine,” CNNs struggle to
maintain coherence over extended durations.
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The introduction of the transformer architecture revolutionized sequence modeling. Originally designed for
natural language processing [5], transformers rely on multi-head self-attention to model global dependencies
among tokens, eliminating the need for recurrence or fixed receptive fields. Vision Transformers (ViT) [6]
applied this concept to images by dividing each image into patches treated as tokens, allowing relationships
between distant regions to be captured explicitly. Building upon this foundation, researchers extended
transformers to video tasks, yielding architectures such as TimeSformer [7], Video Swin Transformer [8],
and Multiscale Vision Transformer (MViT) [9]. These models enabled joint spatial–temporal reasoning and
achieved state-of-the-art performance on major benchmarks. Unlike CNNs, transformers offer a flexible
inductive bias that allows them to generalize across modalities and tasks, making them particularly suitable
for understanding complex human actions.

2. Transformer Architectures for Action Recognition
Transformer-based architectures interpret a video as a sequence of visual tokens that can be modeled across
both spatial and temporal dimensions. TimeSformer [7] introduced factorized self-attention to separately
model spatial and temporal dependencies, offering a balance between accuracy and computational efficiency.
The Video Swin Transformer [8] further advanced this design by introducing hierarchical shifted-window
attention, aggregating local and global context through multiscale feature hierarchies. MViT [9] extended the
approach by progressively pooling tokens to reduce spatial resolution while deepening temporal modeling.
Together, these architectures demonstrated that transformer-based models can handle complex motion
patterns more effectively than conventional CNNs.

The success of transformers in human action recognition stems from their ability to capture both short-term
local details and long-range temporal semantics. Unlike convolutions that rely on spatial proximity, self-
attention allows the model to relate information between non-adjacent frames, which is critical for
recognizing actions with subtle, temporally extended cues. Recent hybrid models such as Uniformer [17]
incorporate convolutional inductive biases into transformer layers, enabling better generalization on mid-
sized datasets. This hybridization combines the strengths of both architectures—CNNs’ efficient local
feature extraction and transformers’ superior global reasoning.

Another significant development lies in multimodal and cross-domain integration. PoseFormer [10] applies
self-attention to human skeletal joint sequences, modeling spatial dependencies among body parts and
temporal continuity of motion. Audio-Visual Transformers (AVT) [11] align video and audio modalities
within a unified attention framework, enabling the system to maintain robustness under noisy conditions or
partial occlusion. Similarly, ActionCLIP [12] leverages pre-trained vision–language models to align video
embeddings with textual descriptions, facilitating zero-shot and open-vocabulary action recognition. These
multimodal extensions illustrate the versatility of transformers as universal sequence learners capable of
fusing heterogeneous information sources.

Self-supervised learning has further enhanced transformer-based action recognition. Masked autoencoders
(MAE) [13] and contrastive video pretraining [14] allow transformers to learn spatiotemporal representations
from large unlabeled datasets by reconstructing masked patches or contrasting positive and negative pairs.
When combined with large-scale corpora such as Kinetics [15] and Something-Something V2 [16], these
approaches have achieved impressive performance with reduced annotation requirements. This paradigm not
only improves efficiency but also enhances the model’ s adaptability to low-resource domains, making
transformer-based recognition systems suitable for broader real-world applications.

http://www.mfacademia.org/index.php/jcssa


Journal of Computer Science and Software Applications

https://www.mfacademia.org/index.php/jcssa

ISSN:2377-0430

Vol. 5, No. 11, 2025

3. Datasets, Evaluation, and Applications
Benchmark datasets play a central role in advancing transformer-based human action recognition. The
Kinetics family [15] provides large-scale video datasets with hundreds of thousands of labeled clips,
supporting general-purpose action classification. Something-Something V2 [16] emphasizes fine-grained
motion understanding and temporal reasoning, while AVA [18] focuses on spatiotemporal action
localization. For 3D skeletal action recognition, the NTU RGB+D 120 dataset [19] remains the standard
benchmark, offering synchronized RGB, depth, and pose data. These datasets have enabled comprehensive
evaluation of transformer-based models, typically measured by top-1 and top-5 accuracy or mean average
precision.

Transformer models consistently outperform convolutional baselines when trained on sufficient data. For
instance, Video Swin Transformer achieves over 84% top-1 accuracy on Kinetics-400, surpassing 3D CNNs
by a notable margin. However, this improvement comes at the cost of increased computational demand,
motivating research into efficient transformer variants such as TokenLearner [18], which dynamically
selects informative tokens, and Uniformer [17], which unifies convolution and attention within a single
backbone. These designs reduce memory consumption and enable real-time inference, facilitating
deployment in embedded or robotic systems. Beyond performance, transformer-based models also exhibit
superior transferability, adapting easily to new datasets and multimodal tasks through pretraining and fine-
tuning.

Applications of transformer-based action recognition are diverse. In healthcare, such systems can monitor
patient activities, detect falls, or assess rehabilitation progress using pose-based and video-based cues. In
sports analytics, they can analyze complex sequences of movement to provide performance feedback. In
autonomous robotics, action understanding enables contextual decision-making and human – robot
collaboration. The flexibility of transformer architectures, capable of integrating RGB, depth, audio, and
textual modalities, makes them particularly valuable in scenarios requiring contextual understanding across
sensors and environments.

4. Challenges and Future Directions
Despite rapid progress, several challenges continue to hinder the full realization of transformer-based action
recognition. The most fundamental limitation is data and computation dependency. Transformers require
massive datasets and computational resources for effective training; without sufficient data diversity, models
tend to overfit or exhibit bias toward dominant classes. Self-supervised and data-efficient methods have
mitigated this issue but remain insufficient for low-resource settings [13], [14]. Lightweight transformer
architectures and parameter-efficient fine-tuning methods are essential for democratizing research and
enabling deployment on edge devices.

Another challenge involves temporal alignment and interpretability. While self-attention captures global
dependencies, it does not guarantee consistent modeling of motion continuity. Transformers may misinterpret
subtle actions if temporal cues are sparsely distributed. Developing mechanisms for structured temporal
reasoning and causal interpretability is thus critical for applications requiring reliability, such as surveillance
or healthcare. Visualization of attention maps offers preliminary insights, but comprehensive explainability
frameworks remain underexplored.
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Bias and fairness are also growing concerns. Datasets like Kinetics and HowTo100M, collected from the web,
may contain imbalanced representations of gender, culture, or activity type, potentially leading to biased
predictions. Multimodal transformers that integrate language supervision risk amplifying textual stereotypes
[12]. Future research must incorporate bias auditing, balanced data collection, and ethical design principles to
ensure inclusivity. Moreover, sustainability has emerged as an important consideration. Training large
transformers demands significant energy consumption; green AI initiatives focusing on efficient architectures
[20] and carbon-aware scheduling can help mitigate environmental impacts.

Looking ahead, the convergence of vision, language, and audio under unified transformer backbones points
toward a new generation of general-purpose models capable of comprehensive behavior understanding. As
seen in recent multimodal systems, scaling data, model size, and tasks together produces emergent
capabilities such as zero-shot recognition and cross-domain reasoning. For human action recognition, this
trend suggests a shift from narrowly defined classification tasks to holistic activity understanding that
encompasses temporal localization, intent recognition, and multimodal reasoning. Realizing this vision will
require continued innovation in efficient architectures, ethical governance, and explainable AI to ensure that
action recognition technologies remain trustworthy and globally accessible.

5. Conclusion
Transformer-based architectures have transformed visual recognition by introducing global self-attention and
scalable spatiotemporal modeling. From ViT and TimeSformer to Video Swin Transformer and MViT, these
models have established new performance standards across major benchmarks. Their capacity to integrate
multimodal information, leverage self-supervised pretraining, and generalize across domains has positioned
transformers as the foundation of next-generation action understanding systems. Nonetheless, challenges in
data efficiency, interpretability, and computational sustainability persist. Future research should focus on
developing lightweight, explainable, and inclusive transformer frameworks capable of real-time multimodal
reasoning. As human–machine interaction becomes increasingly pervasive, robust and ethical transformer-
based action recognition will be central to enabling intelligent systems that understand and respond to human
behavior in natural and meaningful ways.
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