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Abstract: 

Currently, Spark-based applications are widely utilized, and proper configuration can significantly 

enhance the execution efficiency of Spark jobs. Numerous scholars have conducted extensive 

research on Spark parameter tuning within virtual machine clusters. Recently, containers have 

emerged as a prominent cloud computing infrastructure, increasingly employed in service clusters. 

Consequently, it is essential to investigate the parameter tuning of Spark in container clusters. This 

paper addresses the issue of Spark parameter configuration within Docker container clusters, 

introducing a novel parameter tuning method known as ContainerOpt. ContainerOpt leverages 

machine learning techniques to learn and predict job performance under various parameter 

combinations and incorporates an automatic node scaling mechanism to optimize the performance 

of high-input jobs.To achieve a better balance between job execution time and resource utilization, a 

performance representation model based on both time and resources is proposed, replacing the 

traditional model that focuses solely on execution time. Experimental results demonstrate that the 

parameter tuning method improves execution efficiency by 50% compared to the default 

configuration, thereby validating its effectiveness. 

Keywords: 
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1. Introduction 

In 2008, Google published a paper [1] to propose the MapReduce programming model. In recent 

years, Hadoop, an open source big data processing framework based on MapReduce, has been widely 

used in the industry [2]. However, as the data volume of major enterprises grows rapidly, more and 

more people are dissatisfied with MapReduce's low processing efficiency in iterative and interactive 

applications. MapReduce model is divided into two processing stages, Map and Reduce, and the 

intermediate data between them is stored on the disk. A large number of disk IO operations are 

introduced for this purpose, so the design idea is not suitable for processing iterative and interactive 

application. To overcome this type of problem, Spark [3] uses a different approach, which caches all 

intermediate data in memory instead of disk in the form of an elastic dataset RDD. Each RDD 

remembers how it is built from other datasets (via map, join, Group by, etc.) and refactors itself when 

needed. In multi-step analysis, Spark's performance is even 100 times higher than MapReduce. 

Despite this, Spark's performance still has a lot of room for improvement. Without proper parameter 

tuning, jobs’ execution speed will still be slow, which does not reflect the advantages of Spark as a 

fast big data computing engine. 

The parameter configuration methods can be divided into three categories [3-7]: follow the official best 

practice adjustment guide [8], offline parameters configuration method [6, 9-11] and online parameters 

configuration method [12, 13]. Among them, the online parameters configuration method searches for a 
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more optimal configuration by dynamically assigning different configurations and tentatively running 

use small number of input tasks. The disadvantage of this method is that it requires more time for 

exploratory multiple operations, which will have a considerable impact on the total execution time of 

the job, and the results of a small number of inputs often cannot accurately predict the actual input 

performance. 

At present, most of Spark is deployed on virtual machine (hereinafter referred to as VM), and 

academic research is also based on VM clusters. However, another virtualization method, Docker, 

has also been widely researched and applied, and has a great impact on various service modes of 

cloud computing. Reference [14] shows that Spark deployed in a lightweight virtualization 

framework Docker cluster can achieve better performance in the same configuration than Spark in a 

VM cluster. However, how to perform Spark on a Docker cluster Research on parameter 

configuration optimization is still blank. 

This paper studies the parameter configuration tuning of Spark in Docker cluster. Based on the 

characteristics of fast startup and low resource consumption of Docker, a parameter tuning method 
based on machine learning is proposed. 

First, we collect the performance of the job under different configurations and different node numbers, 

then use the GBDT (Gradient Boosting Decision Tree) algorithm to train the data to obtain the 

performance prediction model. For small-scale input jobs, they are directly submitted to cluster with 

the parameters recommended by the performance prediction model a. For large-scale input jobs, they 

are submitted with more nodes and appropriate parameters. 

2. Related work 

In Reference [15], the influence of Docker running parameters on Spark job is studied. By comparing 

the execution time under resource interference and resource completion, it concludeed that Docker 

configuration parameters can greatly affect Spark performance, especially for different types job, 

such as WordCount and Sort. 

At the same time, there are many references aim to improve MapReduce, such improving the 

performance of the algorithm, or tuning the parameters of MapReduce jobs. Reference [9] proposed 

AROMA, a two-stage machine learning and optimization framework. Its first phase is offline work, 

collecting information about past jobs and using K-Medoid cluster jobs into several categories, each 

with similar CPU, memory, and disk utilization. Then for each category, we use the support vector 

machine training data to obtain a performance prediction model for predicting the performance of the 

job under different combinations of different configuration parameters and input sizes; the second 

stage is online work. First, we use the default configuration and a small part of the input to run the 

job to get the resource utilization characteristics, and select the category which has the most similar 

resource utilization characteristics. Then, using the search optimization technology based on the 

category corresponding performance prediction model, the approximate optimal parameter 

configuration that minimizes the resource overhead within the runtime time limit is found. 

3. Spark parameter tuning method - ContainerOpt 

3.1 Overview of ContainerOpt 

The ContainerOpt presented in this paper is dedicated to achieving the highest price/performance 

ratio in terms of resource usage and job execution time, thereby increasing system throughput and 

performance of Spark jobs. Figure 1 shows the overall flow of the method, which is based on the 

second-generation Hadoop-YARN implementation. First, analyze the overall execution flow of the 

job and combine the research of the predecessors to select the parameters that have a greater impact 

on the performance of the job. Then, we Collect the performance data of the job under different 

parameter combinations, use the Gradient Boosting Decision Tree (GBDT) to train the data to obtain 

the performance prediction model and integrate it into Hadoop. When a new job enters the cluster, 

ContainerOpt search the parameter space and use the configuration recommended by the performance 
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prediction model to run new jobs. In this process, if the input data of the job is large (GB level), the 

node automatic scaling mechanism is started. The number of nodes and the configuration given by 

the model are used as the new configuration of the job to run the job and record the results in the 

cluster to decide whether to put the result into the data set. Next, the specific implementation of 

ContainerOpt will be explained. 

 

 

Collect 

  
Fig.1 The Overview of ContainerOpt 

3.2 Performance representation Model 

At present, most studies use job execution time as the only evaluation criterion for Spark performance, 

but experiments in section 4 of this paper show that in many cases a very small part of the 

improvement in execution time comes at the cost of a large increase in resources. This is actually 

unreasonable, because usually there is not only one job in the cluster. If the new job submitted 

consumes a lot of resources, it will drag down the execution of other jobs and reduce the overall 

throughput of the system. 

On the one hand, in the same cluster, the execution time of jobs with the same allocated resources 

and input scales is roughly the same, while in different clusters, the execution time of the same 

resource allocation and input scale may be different; on the other hand, Predicting accurate job 

execution time is very difficult and completely unnecessary. Therefore, this paper considers the 

promotion amount of job execution time, that is, the proportion of the reduction of the execution time 

compared with the time of the job running under the configuration parameter of the minimum required 

amount of resources (see formula 2), where the minimum required amount of resources refers to the 

minimum required amount of resources for the successful operation of the job. 

TI = 
𝑇𝑚𝑖𝑛 − 𝑇𝑟𝑢𝑛 

∗ 100% 𝑓𝑜𝑟𝑚𝑢𝑙𝑎1 
𝑇𝑚𝑖𝑛 

When the size of job input is small, increasing the CPU and memory allocation, TI will only have a 

very small improvement. On the contrary, this method will take up more resources and affect other 

operations. Therefore, this article uses the following model to represent performance: 

P = α ∗ TI + β ∗ 
1

 
R 

𝑓𝑜𝑟𝑚𝑢𝑙𝑎2 

Where R represents the number of resources configured. As can be seen from the formula, the larger 

the TI, the smaller the R, the better the performance. α and β are used to adjust the weight of execution 

time and resource consumption in the performance representation model. Experiments show that the 

range of β is between 0.1 and 0.5. 
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3.3 Parameter selection 

Spark has more than 180 configuration parameters, but only a small amount is critical to the 

performance of Spark jobs. Combined with previous research, this paper selects six parameters that 

have a great impact on job performance. The parameters are shown in Table 1. Table 1 also lists other 

parameters. 

Table 1 Spark parameters 

parameters description Default range 

Spark.num.instances Number of Executor 2 2~nodes*4 

Spark.driver.cores Number of Driver’s CPU 1 1~4 

Spark.driver.memory Driver’s memory 1 1~4 

Spark.executor.cores Number of Executor’s CPU 1 2~16 

Spark.executor.memory Executor’s memory 1G 2`64G 

Spark.default.parallelism Executor’s parallelism  Nodes*executor.cores*3 

inputsize Input size   

nodes Number of nodes   

3.4 Data collection 

This article selected 16 types of load for the big data benchmarking framework HiBench, including 

typical loads (such as WordCount, Sort), iterative jobs (such as PageRank) and machine learning jobs 

(such as k-means). 

The collection of data includes an offline phase and an online phase. In the off-line phase, a sparse 

sampling method is used to generate an appropriate number of parameter combinations in the 

parameter space formed by the combination of all configuration parameters: Firstly, the sampling 

range should be as uniform as possible in the parameter space to avoid excessive deviation between 

the sampling data and the real data. The search is then performed at smaller intervals within the range 

of the better-performing parameters, providing optimal results for the parameter search of the new 

job. During this process, some jobs may fail to run or run several times longer than the default 

parameter. It is not appropriate to set the run time increment of these jobs to -100%.Using the above 

approach, you can generate about 400 parameter combinations, and not all of the parameters for each 

workload are exactly the same. To rule out other factors and randomness, each combination of 

parameters for each workload was run three times for its average value, resulting in about 6,400 pieces 

of data. 

In the online phase, for a newly submitted job, the appropriate parameter configuration was firstly 

searched by using the performance prediction model, and the execution time increase predicted by 

the model at this time was recorded. Then use this parameter configuration to run the job and record 

the running time. If the time difference is not big, the data of this running will be added to the training 

data of the model, in order to get more accurate results of the next operation. If large, we consider 

whether the cluster jitter or the number of jobs cause the difference, and do not add data temporarily, 

but wait for the result of the next job running. If the deviation persists, it is necessary to consider 

whether the cluster has been replaced. 

3.5 Model training and applying 

We use the Gradient Boosting Decision Tree (GBDT) to train the performance data. GBDT, also 

called MART (Multiple Additive Regression Tree), is an iterative Decision Tree algorithm, which is 

composed of Multiple Decision trees, and the conclusion of all trees added together to do the final 

answer. 

In order to prevent overfitting, cross validation is used to improve the capability of performance 

prediction model. After collecting the original performance data, the data is divided into 80% training 

set and 20% test set. The training set is used to train the model, while the test set is used to test the 
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accuracy of the model. In order to get more accurate results, we randomly divided the data and carried 

out three such tests, and the experimental results proved that GBDT has more than 90% accuracy. 

Once we have the final model, we can use it to predict the performance of Spark jobs given a 

combination of parameters. In this paper, random recursive search is used to search parameter space. 

When the optimal parameter combination given by the model is obtained, if the number of nodes 

changes, a script is used to quickly start a new Docker to change the Hadoop slaves file and distribute 

it to each slave node, and then another script is used to set parameters and submit the job for operation. 

4. Experiment 

The server configuration used in this experiment is Intel i7, 32 core, 128G memory. Initially, four 

containers were started, one as the master node and three as the slaves node. The version number of 

Docker is 17.0.6, the version of Spark is 1.6.2, and the version of Hadoop is 2.6.5. 

4.1 The influence of the number of nodes on the performance of the job 

First, we evaluate the execution of jobs with different number of nodes under the condition that other 

parameters are exactly the same. 

 

 

 

 

 

 

 

 

 

 
Fig. 2 The impact of the number of nodes on the job performance 

The above figure shows the improvement of execution time obtained by 6 jobs when the parameters 

are exactly the same(the number of executors is 6, executors’ CPU is 4,executors’ memory is 6GB,  

paralleliam of job is 24 and input size is 3GB) but the number of nodes is 3 and 6 respectively. It can 

be seen that, except for SVM, the jobs executed on the six nodes all achieved a significantly larger 

increase in execution time than the jobs executed on the three nodes. This is because although the 

number of executors is the same, the resources of each executor are the same, that is, the resources 

available for the job are the same, but the 6-nodes cluster has a larger HDFS read/write throughput. 

Therefore, when the input data amount of the job is large and the HDFS is frequently read and written, 

increase the number of nodes dynamically can achieve better performance. This experiment proves 

that the node scaling mechanism effectively increases the performance. 

4.2 Optimal performance of job under different input 

In order to evaluate the best results that ContainerOpt can achieve, the experiment selected three 

typical types of job types (WordCount, PageRank, LDA) to compare the optimal job execution time 

improvement achieved with different parameter combinations under different input sizes. The results 

are shown in figure 3. 

The six input sizes for the job are 30KB, 300MB, 3GB, 16GB and 32GB. It can be seen from the 

experimental results that the execution time of the job running with the ContainerOpt recommended 

parameter is significantly reduced compared to the default configuration regardless of the input scale 

(the higher the execution time promotion value, the more the job execution time decreases under the 

recommendation parameter). And the larger the size of the input data, the more obvious the role of 

parameter adjustment. This  is because the larger the input data size, the higher the resource 

 
100%       

3 6 
80% 

60% 

40% 

20% 

0% 

执
行

时
间

提
升

量
 



 

Journal of computer science and software applications 

https://www.mfacademia.org/   

ISSN:2377-0430 

Vol. 2, No. 1, 2022 

 

6 

                    

 

 
 

requirements. ContainerOpt adjusts the allocated resources by adjusting the parameters, so the job 

execution speed is faster, which proves that ContainerOpt is indeed effective. 

The performance here refers to the performance representation model proposed in this paper. Figure 

6 shows how the execution time of Terasort changes as the value of executor.cores change when the 

value of executor.memory is 4 and input size is 3GB; Figure 7 shows how the execution time of 

Terasort changes as the value of executor.memory change when the value executor.cores of is 4 and 

input size is 3GB. 

 

 

 

 

 

 

 

 

 

 
Fig.3 Optimal performance of WordCount with different inputs 

 

 

 

 

 

 

 

 

 

 
Fig.4 Optimal performance of PageRank with different inputs 

 

 

 

 

 

 

 

 

 

 
Fig.5 Optimal performance of LDA with different inputs 
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Fig.6 The amount of execution time increase of TeraSort varies with the number of CPUs. 
 

 

 

 

 

 

 

 
 

 

 
 

Fig.7 The amount of execution time increase of TeraSort varies with the number of memory 

As can be seen from the above figure, the increase of resources is not always positively correlated 

with the improvement of the execution time of the job, but there is a critical point. When the resources 

given exceed the critical point, the improvement of the execution time of the job decreases instead. 

These are mainly because: on the one hand, HDFS has poor concurrency, and when executor's cores 

toward more, thread switching time increases and job execution time increases. On the other hand, 

increasing executor memory can cause significant GC latency or even blocking, which can lead to 

increase of job execution time. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 TeraSort’s performance varies with the number of CPUs 
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Fig.9 TeraSort’s performance varies with the number of memory 

It can also be seen from figure 6 and figure 7 that when approaching the optimal point (or the input 

data size is small), the resource increases by one unit, while the improvement of job’s execution time 

is very limited. This is also the reason why this paper proposes the performance model determined 

by both execution time and resource. 

The following experiment maintained the same conditions above, but the output of the experiment  

did not take the improvement of the execution time of the job, but the performance of the job, in 

which the parameter of performance formula 3 was 0.3. 

As can be seen from figure 8 and figure 9, the curve trend of execution time improvement and 
performance is roughly the same, but the size of some points is different. 

For example, in the figure 8, when the value of executor’s memory is 4GB, the execution time 

promotion is 35%; when memory is 5GB, the execution time promotion is 36%, which is higher than 

35%. However, on the curve of performance, when memory is 4GB, performance is 80%; when 

memory is 5GB, the performance is also 80%. Although the performance is the same, we will choose 

the recommendation parameter of 4 instead of 5, so as to achieve the purpose of saving resources. 

5. Conclusion 

This paper examines the performance of Spark within Docker environments, introducing a 

performance representation model that incorporates both execution time and resource utilization. 

Historical data from various jobs were collected to train a performance prediction model using 

machine learning algorithms. Based on this, a parameter adjustment method named ContainerOpt is 

proposed. ContainerOpt also integrates an auto-scaling mechanism, which increases the number of 

nodes when the input data size is large to enhance performance and decreases the number of nodes 

when the input data size is small to conserve resources. Experimental results indicate that this 

method can achieve up to a 50% improvement in performance. Future work will focus on 

considering a broader range of jobs and exploring the statistical correlations between them. This 

will enable the system to determine suitable configurations for new jobs based on prior data, thereby 

enhancing its scalability. 
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