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Abstract: 

Deduplication technology detects and eliminates redundant data, significantly conserving disk 

space, thus finding extensive applications across various domains. Nevertheless, the removal of 

numerous duplicate data blocks leads to data fragmentation, adversely affecting data recovery 

performance. To address fragmentation issues, rewriting algorithms have been introduced. 

However, current rewriting algorithms fail to precisely identify fragmented blocks. To resolve this 

issue, we propose a new rewriting algorithm called MERW. MERW takes into account 

fragmentation information on a broader scale and selects the most optimal fragmented blocks. 

Consequently, MERW effectively mitigates data fragmentation by accurately rewriting fragmented 

blocks. Experimental results demonstrate that MERW enhances recovery performance by 48% and 

improves the deduplication ratio by 6%. 
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1. Introduction 

The explosive growth of information data poses severe challenges to storage technology. There are 

many duplicate data in massive data, and storing duplicate data causes a waste of storage space. The 

deduplication technology uses a block algorithm to block the data stream [1,2], and saves only the 

unique copy of the duplicate data block, thereby greatly saving storage space. Data fragmentation 

refers to the continuous data blocks in the data stream are scattered in various locations on the disk 

after deduplication. We refer to the sequence of data blocks in the data stream as a logical sequence 

and the sequence of data blocks stored on the disk as a physical sequence. The rewrite algorithms [6, 

7] are to make the logical sequence and the physical sequence as consistent as possible by rewriting 

the fragment blocks, thereby alleviating the fragmentation problem and improving the data recovery 

performance. However, rewriting fragmented blocks will reduce the data deduplication ratio [3]. The 

deduplication ratio refers to the size of the deleted data compared to the size of the original backup 

data. Precise deduplication methods [4] (does not apply any rewriting algorithm) delete every 

duplicate block to maximize the deduplication ratio, but the data recovery performance of the 

deduplication method is extremely poor. With the development of cloud storage, the index of data 

recovery performance becomes more and more important [5]. In this regard, the rewriting algorithms 

[6,7] identify fragmented blocks in repeated blocks, and rewrite these fragmented blocks, sacrificing 

a certain deduplication ratio in exchange for an improvement in data recovery performance. However, 

these rewrite algorithms use the local information of the backup stream (data stream) to identify the 

fragmented blocks, resulting in the identified fragmented blocks being not accurate enough. In this 

regard, we propose the MERW algorithm. The MERW algorithm uses as much information as 
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possible in the backup stream to more accurately identify and rewrite fragmented blocks, which 

ultimately improves not only the performance of data recovery but also the deduplication ratio. 

 

2. MERW 

2.1 System Overview 

MERW is divided into three major modules: Information Recording Module (IRM), Optimal 

Selection Module (OSM), and Rewriting Module (RM). The information recording module is 

responsible for recording the fragmentation information of the data block; the optimal selection 

module is responsible for selecting the most fragmented fragment from the fragmentation 

information; the rewriting module is responsible for rewriting the fragment selected by the 

optimal selection module. The work flow of the three modules is as follows: (i) Each time a new 

data block is backed up, the information recording module records the fragmentation degree of the 

data block and sorts the data blocks according to the fragmentation degree; (ii) when rewriting is 

needed When fragmented blocks are used to improve data recovery performance, the optimal 

selection operation is triggered. At this time, the optimal selection module selects the top m most 

severely fragmented data blocks in the sorting table; (iii) the rewrite module divides these 

fragmented blocks Rewrite to disk. 

In the (i) step, the degree of fragmentation of a data block refers to the time cost of reading the data 

block during data recovery. The longer the read time, the more severe the fragmentation of the data 

block; In (ii), m can be adjusted. The larger m is, the lower the deduplication ratio is, and the better 

the data recovery performance is. The smaller m is, the higher the deduplication ratio is, the worse 

the data recovery performance is. By dynamically adjusting the value of m, NERW can very well 

weigh the relationship between the deduplication ratio and the data recovery performance. In (iii), the 

operation of writing fragmented blocks to disk is called rewriting, because a fragmented block must 

be A duplicate block, where writing a duplicate block to disk is called overwrite, and writing a unique 

block to disk is called write. 

 

2.2 Rewriting the optimal fragmented blocks 
 

Fig.1. Rewriting the optimal fragmented blocks. 

As shown in Figure 1, after the nth backup stream is deduplicated, the data blocks in the backup 

stream are scattered and stored in various containers [8] on the disk (that is, the gray data blocks in 

the figure). A container is a unit that stores several data blocks, and it is used to save the locality of 

the backup stream. The capacity of each container in the figure is 3 data blocks, and the white data 

blocks represent data blocks in other backup streams. In the process of restoring the n-th backup 

stream, reading containers 1, 2, and 3 can recover two data blocks, but reading container 4 can only 

recover data block J. The number of data blocks that can be recovered by reading a container can well 

reflect the degree of fragmentation. We define the degree of fragmentation as: 

Degree = Capacity/numb (1) 

In the formula, degree represents the degree of fragmentation, numb represents the gray data blocks 

in a container, and the Capacity table indicates the maximum number of data blocks that a container 

can store. Then for data blocks A and C, they are fragmented to 1.5. Similarly, for data blocks D and 

E, and data blocks G and I, they are all fragmented to 1.5; but for data block J, it is fragmented. The 
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degree is 3. The rewrite algorithm selects the most fragmented data blocks and rewrites them. As 

shown, the most fragmented data block J is rewritten into the container 5. 

By rewriting the fragmented block, when restoring the data block J in the nth backup stream, the data 

block can be directly obtained from the container 5 in the memory, because when the previous data 

block L is restored, the system has removed the container 5 from the disk. Read into memory. On the 

contrary, if the data block J is not rewritten into the container 5, the container 4 needs to be read from 

the disk to obtain the data block J, which results in an additional disk IO, which reduces the data 

recovery performance.By rewriting the fragmented block, when restoring the data block J in the nth 

backup stream, the data block can be directly obtained from the container 5 in the memory, because 

when the previous data block L is restored, the system has removed the container 5 from the disk. 

Read into memory. On the contrary, if the data block J is not rewritten into the container 5, the 

container 4 needs to be read from the disk to obtain the data block J, which results in an additional 

disk IO, which reduces the data recovery performance. 

 

3. Evaluation 

3.1 Experiment environment 

To evaluate the efficiency of the MERW, we implemented the MERW on Destor [9]. The Destor is 

an open source project on a deduplication backup system. The None method [3, 9] does not use any 

rewrite algorithm to alleviate fragmentation, so we use it as a benchmark for our experiments; the 

CRW method [10] coarsely identifies and rewrites fragmented blocks, sacrificing the deduplication 

ratio in exchange for data recovery performance improvement However, because the fragments it 

recognizes are not accurate enough, its gain is very limited. Fortunately, MERW accurately identifies 

and rewrites fragments, which makes up for the shortcomings of CRW, and further improves the data 

recovery performance and deduplication ratio. We conducted comprehensive experiments and 

comparisons of None, CRW and MERW to prove the efficiency of MERW. The hardware 

configuration of the experiment consists of a quad-core CPU (Intel (R) Core (TM) i7-6700 CPU @ 

3.40GHz), 4G memory and 1000G hard disk. The operating system used in the experiment is CentOS 

release 7.4 (Linux version 3.10. 0). 

3.2 Workload 

Table 1 The dataset characteristics 

Attributes Value 

Total size 1487GB 

Average chunk size 4KB 

# of versions 15 

Average size of one backup 99GB 

We use a representative subset of the FSL [11] dataset to deploy our experiments. FSL is a commonly 

used dataset [12]. This dataset is collected on the server of Stony Brook University and represents the 

real deduplication backup scenario. Data. We analyzed the characteristics of the dataset, and Table 1 

lists some important characteristics of the dataset. We performed a total of 15 backups, the average 

data size of each backup was 99GB, the total size of the data set used was 1487GB, we used the 

content-based variable-length block algorithm [2], and the average block size was 4KB. 

3.3 Performance Evaluation 

We measure three performance indicators: data recovery performance, deduplication ratio, and 

computational overhead. The speed factor [8] reflects the performance of data recovery well. It 

represents the number of data blocks that can be recovered by reading a container. The larger the 

value of the speed factor, the better the recovery performance. The deduplication ratio refers to the 

deletion. The data size is divided by the original data size. The higher the deduplication ratio, the 

more storage space can be saved. The calculation overhead refers to the time it takes for the system 
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to recognize fragmented blocks. The lower the calculation overhead, the better the performance. 

Restore performance: Fig.2 (a) shows the speed factor of the three methods, where the abscissa is the 

backup id (backup version number) and the ordinate is the speed factor. As shown in the figure, 

Baseline has the lowest speed factor. This is because Baseline does not use any rewrite algorithm to 

rewrite fragmented blocks. As a result, during the data recovery process, the system frequently 

accesses the disk, and frequent disk IO will reduce data recovery performance. (Ie speed factor). The 

speed factor of CRW is much higher than the speed factor of Baseline. This is because CRW coarsely 

identifies and rewrites fragmented blocks, which alleviates the degree of fragmentation, so its speed 

factor has been greatly improved. As we expected, the speed factor of MERW is the highest, because 

MERW more accurately recognizes fragmentation than CRW, and rewrites the optimal fragmented 

block, thereby further improving data recovery performance. The average speed factors for MERW, 

Baseline, and CRW are 3.7, 2.5, and 3.5, respectively. 
 

 
 

 

(a) restore performance 

 

 

(b) deduplication ratio 

 

 

(c) computing overhead 

Fig. 2 The restore performance, deduplication ratio and computing overhead, driven by the real 

workloads 

Deduplication ratio: Fig.2 (b) shows the deduplication ratio of the three methods, where the abscissa 

is the backup id and the ordinate is the deduplication ratio. As shown in the figure, CRW has the 

lowest deduplication ratio. This is because CRW is not accurate enough to identify fragmented blocks, 

resulting in rewriting some unnecessary data blocks, thereby wasting disk space. By rewriting the 

optimal fragmented block (the most fragmented fragmented block), MERW avoids rewriting 

unnecessary data blocks, thereby improving the deduplication ratio. Baseline's deduplication ratio is 

the highest, because baseline does not consider the performance of data recovery, it only writes the 

unique block to disk, and does not rewrite fragmented blocks. The average deduplication ratios of 

NERW, CRW, and Baseline were 0.75, 0.71, and 0.87, respectively. 

Computing overhead: Fig.2 (c) shows the computational cost of the three methods. The abscissa is 

the backup id, and the ordinate is time. The unit is millisecond. As we expected, Baseline's 

computational overhead is 0, because it does not recognize the operation of fragmented blocks at all. 

The computational cost of CRW is higher than that of Baseline, because CRW requires additional 

calculations to identify fragmented blocks. It is expected that the computational cost of MERW is 

higher than CRW, because MERW needs more calculations in order to identify the optimal fragment. 

However, even though the calculation overhead of MERW is high in the three methods, the 

calculation overhead required by MERW is still small. The highest calculation overhead of MERW 

in all backups is only 176ms (backup id11), which can be ignored. 

Baseline severely degrades the performance of data recovery. In response to this problem, CRW 

improves the data recovery performance by coarsely identifying and rewriting fragmented blocks, but 

also reduces a certain deduplication ratio. CRW's identification of fragmented blocks is not accurate 

enough, resulting in rewriting unnecessary data blocks, not only wasting storage space (such as disks), 

but also limiting the performance of data recovery. In response to this problem, we proposed MERW, 

which accurately identified fragmented blocks and rewritten the optimal fragmented blocks, which 

ultimately improved not only the performance of data recovery, but also the deduplication ratio. 
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4. Conclusion 

In disaster recovery systems, data recovery performance is especially important. The fragment blocks 

identified by the current rewrite methods are not accurate enough. The rewritten fragment blocks are 

not optimal fragment blocks, so their improvement of data recovery performance and deduplication 

ratio are limited. In response to these problems, in this pepar, we propose MERW. MERW selects the 

optimal fragmented blocks through a large number of calculations, and rewrites these optimal 

fragmented blocks, which makes up for the shortcomings of traditional methods of rewriting 

unnecessary fragmented blocks, thereby not only improving data recovery performance, but also 

improving the deduplication ratio. We conducted a comprehensive experiments. Experimental results 

show that, compared to Baseline and CRW, MERW improves the data recovery performance by 48% 

and 5.7%, respectively. Compared to CRW, MERW improves the deduplication ratio by 6%. 
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